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Wildlife@Home

Citizen Science project combining crowd
sourcing and volunteer computing.

Users can examine videos and images and
record what happens

They can also volunteer their computer to

download videos and run algorithms over
them

There is a web portal to compare results from
the users, experts, and computer vision
algorithms



Wildlife@Home

* Nest cameras
* Around 7.8 years of video time gathered over 3

years
— Over 91,000 videos of Grouse, Interior Least Tern, and

Piping Plover
— Alittle over 4.5TB
* Challenges with dataset

— Changing weather
— Changing lighting as day progresses, cloud cover

— Some species are camouflaged
— Video quality can be low



Wildlife@Home: Watch Wildlife Video

Wildlife@Home ~ Information ~ Top Lists ~ Message Boards Wildlife Video (38) ~ About the Wildlife + Travis Desell ~

Video #10501 - CH00_20120611_105019MN

Parent Behavior - Off Nest 00:16:30 00:17:14
1sert comments and hashtags here.
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The grouse is inspecting the camera.

NG New Event

166305.375 seconds watched : 78 events marked (35 valid, 0 invalid, 0 missed) Skip

Crowd sourcing interface users can give us information about the
video through. The biology experts have a similar interface.



Convolutional Neural Networks

* CNNs commonly used for image classification

* Afew types of layers
— Convolutional (has weights to be trained)

— Activation depth
] SSSTHA) height
— Max Pooling . L R8L90H . ==
OOOOOW vidth

— Fully Connected

http://cs231n.github.io/assets/cnn/cnn.jpeg

e Softmax or SVM usually used at the end
* Local connections, shared weights
* Learns from labeled training data



Creating Training Data

Images of variable sizes
Sub-images size 32x32 used for training
Striding process used to get sub-images

Careful cropping needed to minimize
mislabeled data
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Creating and Training CNN

Weritten in C++ and OpenCL
— C++ allows distribution via BOINC
— OpenCL allows execution on most CPUs and GPUs

Stochastic gradient descent backpropagation
Uses L2 regularization and Nesterov Momentum

Weights initialized by normal distribution wlith
mean of 0 and standard deviation of\/2/n

Two way softmax classifier

— (tern not in frame, tern in frame)

Lhttp://cs231n.github.io/neural-networks-3/



Creating and Training CNN

Feature Feature Feature Feature Feature Feature
Inputs maps maps maps maps maps maps Outputs
3@32x32 6@28x28 6@14x14 7@14x14 10@12x12 10@4x4 S@4x4 2
%
Convolution Max-pooling Convolution Convolution Max-pooling Convolution Fully
5x5 kernel 2x2 kernel 3x3 kernel 3x3 kernel 3x3 kernel 3x3 kernel connected
Layer Type Layer Dims Filter/ Stride Number Padding
Pool Size Filters
Input 32x32x3
Convolutional 28 x 28 x 6 5 1 6 0
Max Pooling 14 x 14x 6 2 2
Convolutional 14 x 14 x7 3 1 7 1
Convolutional 12 x 12 x 10 3 1 10 0
Max Pooling 4 x4x10 3 3
Convolutional 4x4x35 3 1 5 1
Fully Connected 1 x1x2

In total 2068 weights




Running the Trained CNN

e Strided over full images similar to method
used to create training data

* A prediction image is created for each frame
in video to create a prediction video

* Achartis also created plotting how much of
each frame is predicted to be of the positive
class



Running the Trained CNN

* Each pixel in full image has a “pixel classifier”

— Softmax output in sub-image is added into pixel
classifier of each pixel in sub-image

* Sub-images may overlap and their outputs are
summed into pixel classifier

* Pixel color determined using ratio of squares
of pixel classifier

— red is positive class, blue is negative class

r — 255%2)/ ZC,LQ b = 2550%/ Zcf
i=0 i=0



Results

* |nitially trained 5 epochs over ~73,000 images
from 1 video

* Ended training with accuracy of 95.6% on training
data

* Run over test set of 280,000 images from 2 other
videos with 82% accuracy
— These images were not created yet during initial
training
— Videos all from same nest, so some background
images might have been similar

— 77% of errors from false positives



Results

06/25/2013

Original Image After Initial Training



Extra Training

* Misclassification prompted extra training on
CNN

* New training set of approx. 17,000 images
— 69% negative
— Mostly of trees and ground stubble

— Positive examples were reused from original
training set
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Original Image After Initial Training

After 2 extra epochs After 4 extra epochs



Prediction Video




Tracking when a tern is in the frame

Charts were made tracking how much of the
image is comprised of red (positive class)
pixels

Easy to see some trends across whole video
Difficult to classify frame by frame

Difficult to classify more complex events



Results of Running Trained CNN over Simple Video

Red Pixel Count
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Red Pixel Count

Results of Running Trained CNN over More Complex
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Improving Performance

* Many computers have multiple OpenCL
capable devices.

— Exp. A CPU and a GPU

* Runtime performance can be increased by
using multiple devices simultaneously

* Some devices may be faster or slower than
others



Improving Performance

Work stealing approach
Copy of CNN on each device

Each device requests one frame at a time from
Video manager

Once finished, the results are submitted to

Output manager

— Frames that come out of order are buffered until
they are next to be outputted



Thread 0
OpenCL device 0

Copy of CNN on
local device

2. Run frame
through CNN.
Create prediction

Video manager
(thread safe)

1a. Request next frame —
Next R -
— Video || Remaining
1b. Return next frame and Frame Video

frame number

frame and
calculate red . .
ivel count 3. Submit prediction frame, frame number, and
P red pixel count. If frame is next to be outputted,
send to output video and CSV and check list of
waiting frames for next needed frame. Else
hread . 7 put frame into waiting list sorted by frame
Thread 1 ) e number.
OpenCL device 1 A ’
Copy of CNN on S~o -
local device > Output manager
(thread safe)
[ ]
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° /1 Output Output
/ Video Csv
Thread n 7
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Copy of CNN on List of waiting
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Performance Results

Computer Devices Time (h:mm:ss) Seconds/Frame
Mac Pro 1 GPU 48:07 5.12
Mac Pro CPU 32:01 3.41
Mac Pro 2 GPUs 27:34 2.93
Mac Pro CPU and 1 GPU 20:45 2.21
Mac Pro CPU and 2 GPUs 17:27 1.86
MacBook Pro GPU 1:17:02 8.20
MacBook Pro CPU 35:06 3.73
MacBook Pro CPU and GPU 26:03 2.77

These results are from running on 56 seconds of video (564 frames) with a stride
of 15 in both directions.



Future Work

Get more training data
— Grouse and Piping Plover
— Crowd source creation of training data

Full implementation with BOINC for distributed
running over entire dataset

Larger sizes than 32x32

Speed improvements to CNN code since submission
warrant testing of larger networks

Better algorithms to determine if frames contain
wildlife or if it is noise

— CNN over output?

— Blob detection on output?



Resources

* Code on Git

— https://github.com/Connor-Bowley/
neuralNetwork

— Commit 8d95bf087cde7483c4984fc4891778f5280381fc
(May 24, 2016)

* Videos available via Wildlife@Home Data
Release

— http://csgrid.org/csg/wildlife/data_releases.php
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Thanks!

Questions?

http://csgrid.org/cse/wildlife

connor.bowley7@gmail.com




