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Ultra-high-res. ocean models are
now highly realistic, revealing,

About 101911 numbers per snapshot
103-6 snapshots stored per run
= 1013-17 nos. per run

Source: Chris Hill, MIT, http://mitgcm.orq,
Haine, 2010.



http://mitgcm.org

and need good tools for
DOSt processing

Gelderloos et al., 2016b
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Lagrangian particle models
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Two types of offline Lagrangian particle-tracking models
available:

1. Analytical models: Very fast, but assume stationarity
between model samples —> inaccurate

2. Numerical model: CMS most widely used example,
needs Unix and unphysical solid boundary conditions

Our code is numerical with correct boundary-sliding
conditions, but very slow —> needs speeding up



Old implementation

Koszalka et al., 2013



Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions
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Old implementation: Step 1

Load grid and bathymetry info
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Old implementation: Step 1

& Load grid and bathymetry info

Seed particles in the domain
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Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields
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Old implementation: Step 2

Load 2 sequential
3D velocity fields

Create a local environment
- around the particle (necessary

/ / Ny for old interpn function)

NX
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Old implementation: Step 2

NX

NY

Calculate next piece
of the trajectory

Explicit Runge-Kutta (2,3)-pair ODE
solver for moderately stiff problems
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Old implementation: Step 2

Step forward
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Old implementation: Step 2

Interrupt If:

1) particle moves to another
— cell

= 2) particle hits the
bathymetry
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Old implementation: Step 2

Interrupt If:
1) particle moves to another
cell

/ NY Get new local

neighborhooad
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Old implementation: Step 2

Interrupt If:
2) particle hits the
bathymetry

“

Switch to along-bathymetry
sliding mode



Old implementation: Step 2

Sequential implementation because:

* Required to handle small neighborhoods (because
interpn used to be very sensitive to cutout size)

* TiImings of interrupts are unknown a priori



Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

T;(t) = T(x4,t)



Old implementation: Step 3

@ Load sequential property

NZ | | fields and interpolate
I/.Jy
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Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis



Old implementation: Step 4

Particle locations and temperature
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Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis

Large potential gain by vectorization & parallelization of steps 2 and 3




New Implementation
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Interpolation improvements (I)
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Interpolation improvements (1)

Removed cell boundary
iINnterrupts:

e (1) Faster

£ (2) More accurate

(3) Simpler code
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Interpolation improvements (1)
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Vectorization of ocean-floor
Impingement interpolations
yields a 160x speedup for
106 particles

(Cubic interpolation only
possible in CPU)

sgn [H(x;) + z;]



Bucket-List Algorithm
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Parallelizing part 3

Vectorization and parallelization (with parfor)
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Experiment

Ti(t) = T(xit)

O: original

1: native little endian + fread
2: vectorized

3: parallelized

C/W: cold/warm cache

40 particles test case
yields 10x speedup



Planned iImprovements

Speedup:
1. Implement Bucket-List algorithm
2. Use sparse array (disregard grid cells under the ocean floor)

3. Use databases and space-filling curves

Accuracy:
1. Use different ODE solver for interior and boundary-sliding particle trajectories (with

different tolerance settings)



Conclusions

We built a particle-tracking code with accurate
boundary-sliding representation

Vectorization of the particle-tracking part of the algorithm
has yielded a 3500 times speedup for 103 particles (5000 for
106 particles)

Vectorization of ocean-tloor impingement has yielded an
additional factor 6 for 103 particles (160 for 106 particles)

Vectorization/parallelization of the property-extraction part of
the algorithm has yielded a 10x speedup for 40 particles



Future Work

* Make the particle-tracking algorithm
publicly available
~* Improve the back-end database

..+ environment
. * Enhance post-processing functionality
\ ~» Scale up to benchmark global ocean
»* - circulation solution

Koszalka et al., 2013; Magaldi & Haine, 2016



