JOHNS HOPKINS
4 UNIVERSITY

A tast algorithm for neutrally-
buoyant Lagrangian particles
N numerical ocean modeling

Renske Gelderloos
Alex Szalay
Thomas Haine
Gerard Lemson

eScience, Baltimore, 26 October 2016

Ultra-high-res. ocean models are
now highly realistic, revealing,

About 101911 numbers per snapshot
103-6 snapshots stored per run
= 1013-17 nos. per run

Source: Chris Hill, MIT, http://mitgcm.orq,
Haine, 2010.

http://mitgcm.org

and need good tools for
DOSt processing

Gelderloos et al., 2016b

01-Nov-2007 01-Nov-2007
: ' 8
] 68 J
16
. 66 1 M4
E 64 1>
T 62 1 M0
-40 -35 -30 -25 -20 -15 -40 -35 -30 -25 -20 -15
01-Nov-2007 01-Nov-2007
' , 0
35
34.5
1 -500
34
| @335 ~ -1000
] 33 i
1 i 1 1 _1500
-40 -35 -30 -25 -20 -15

Lagrangian particle models

dx;(1)

..' "(
’;eM
.’l ~

|
-
~~
e
S.
~~
~—

=
=
||
=
25
X,

Two types of offline Lagrangian particle-tracking models
available:

1. Analytical models: Very fast, but assume stationarity
between model samples —> inaccurate

2. Numerical model: CMS most widely used example,
needs Unix and unphysical solid boundary conditions

Our code is numerical with correct boundary-sliding
conditions, but very slow —> needs speeding up

Old implementation

Koszalka et al., 2013

Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

NZ

Old implementation: Step 1

Load grid and bathymetry info

S H(x)

e NY

NX

NZ

Old implementation: Step 1

& Load grid and bathymetry info

Seed particles in the domain

/ | . " X; (t — O)

Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

(IZXi (IL)

= ulx;.t
dt (i t)

Old implementation: Step 2

Load 2 sequential
3D velocity fields

Create a local environment
- around the particle (necessary

/ / Ny for old interpn function)

NX

NZ

Old implementation: Step 2

NX

NY

Calculate next piece
of the trajectory

Explicit Runge-Kutta (2,3)-pair ODE
solver for moderately stiff problems

NZ

Old implementation: Step 2

Step forward

e NY

NZ

Old implementation: Step 2

Interrupt If:

1) particle moves to another
— cell

= 2) particle hits the
bathymetry

L - NY

NX

NZ

Old implementation: Step 2

Interrupt If:
1) particle moves to another
cell

/ NY Get new local

neighborhooad
NX

Old implementation: Step 2

Interrupt If:
2) particle hits the
bathymetry

“

Switch to along-bathymetry
sliding mode

Old implementation: Step 2

Sequential implementation because:

* Required to handle small neighborhoods (because
interpn used to be very sensitive to cutout size)

* TiImings of interrupts are unknown a priori

Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

T;(t) = T(x4,t)

Old implementation: Step 3

@ Load sequential property

NZ | | fields and interpolate
I/.Jy

NX

Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis

Old implementation: Step 4

Particle locations and temperature

Depth (m)

3
105
0 -
50 Save time series of particle
10 . .
locations and properties
100 J
150 | B 05
200 -
-250 . -1
70
69 -20
68 -25 3k

67 -30
Latitude 66 -35 Longitude

Old implementation

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis

Large potential gain by vectorization & parallelization of steps 2 and 3

New Implementation

eeeeeeeeeeeeeeeeeeeee

Interpolation improvements (I)

100
—i— CPU
e SMIL
10 |
- oPu / CPU: local small array no
1))
2 & / longer necessary
2 'O~ SR
E — GPU: requires loading data
i / into GPU memory —>
0.1 7 faster for >1000 particles
| —~
— — —— A
0.01
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
Npart dx;(t)

dt

NZ

Interpolation improvements (1)

Removed cell boundary
iINnterrupts:

e (1) Faster

£ (2) More accurate

(3) Simpler code

L - NY

NX

Interpolation improvements (1)

10,000.0

1,000.0

(WY
-
©
)

10.0

total time [sec]

1.0

0.1

D OTIg

e \J@CL

Vi

10000
Npart

100000

1000000

Vectorization of ocean-floor
Impingement interpolations
yields a 160x speedup for
106 particles

(Cubic interpolation only
possible in CPU)

sgn [H(x;) + z;]

Bucket-List Algorithm

> ~ float_trai(i)

1_

find_events()

! VoL i
R R 2D ; ==
i ; i : E Pl bdy_events1 ’ bdy_events2
: R ;
' : l i [
B N - .
/ T ; N return ‘
P BN N £nd of Y |
| » end
step? | -
tO tl t2 t3 t4 tS t6 t7 tf ‘

3D

time in sec

350

300

250

N
o
o

150

100

50

Parallelizing part 3

Vectorization and parallelization (with parfor)

Co

WO
C1 C2
w1 w2 €3
[]
1 2 3 4 5 6 7 8

Experiment

Ti(t) = T(xit)

O: original

1: native little endian + fread
2: vectorized

3: parallelized

C/W: cold/warm cache

40 particles test case
yields 10x speedup

Planned iImprovements

Speedup:
1. Implement Bucket-List algorithm
2. Use sparse array (disregard grid cells under the ocean floor)

3. Use databases and space-filling curves

Accuracy:
1. Use different ODE solver for interior and boundary-sliding particle trajectories (with

different tolerance settings)

Conclusions

We built a particle-tracking code with accurate
boundary-sliding representation

Vectorization of the particle-tracking part of the algorithm
has yielded a 3500 times speedup for 103 particles (5000 for
106 particles)

Vectorization of ocean-tloor impingement has yielded an
additional factor 6 for 103 particles (160 for 106 particles)

Vectorization/parallelization of the property-extraction part of
the algorithm has yielded a 10x speedup for 40 particles

Future Work

* Make the particle-tracking algorithm
publicly available
~* Improve the back-end database

..+ environment
. * Enhance post-processing functionality
\ ~» Scale up to benchmark global ocean
»* - circulation solution

Koszalka et al., 2013; Magaldi & Haine, 2016

