
A fast algorithm for neutrally-
buoyant Lagrangian particles
in numerical ocean modeling

Renske Gelderloos
Alex Szalay

Thomas Haine
Gerard Lemson

eScience, Baltimore, 26 October 2016

Ultra-high-res. ocean models are
now highly realistic, revealing,

Source: Chris Hill, MIT, http://mitgcm.org,
Haine, 2010.

About 1010-11 numbers per snapshot
103-6 snapshots stored per run
= 1013-17 nos. per run

http://mitgcm.org

Origin Temperature

Salinity Depth

and need good tools for
post processing

Gelderloos et al., 2016b

Lagrangian particle models

Two types of offline Lagrangian particle-tracking models
available:

1. Analytical models: Very fast, but assume stationarity
between model samples —> inaccurate

2. Numerical model: CMS most widely used example,
needs Unix and unphysical solid boundary conditions

Our code is numerical with correct boundary-sliding
conditions, but very slow —> needs speeding up

Old implementation

Koszalka et al., 2013

Old implementation
Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

Old implementation: Step 1

NY

NX

NZ
Load grid and bathymetry info

Old implementation: Step 1

NY

NX

NZ
Load grid and bathymetry info

Seed particles in the domain

Old implementation
Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

Old implementation: Step 2

NY

NX

NZ
Create a local environment
around the particle (necessary
for old interpn function)

Load 2 sequential
3D velocity fields

Old implementation: Step 2

NY

NX

NZ

Calculate next piece
of the trajectory

Explicit Runge-Kutta (2,3)-pair ODE
solver for moderately stiff problems

Old implementation: Step 2

NY

NX

NZ

Step forward

Old implementation: Step 2

NY

NX

NZ

Interrupt if:
1) particle moves to another

cell
2) particle hits the

bathymetry

Old implementation: Step 2

NY

NX

NZ

Get new local
neighborhood

Interrupt if:
1) particle moves to another

cell

Old implementation: Step 2

Switch to along-bathymetry
sliding mode

Interrupt if:
2) particle hits the
bathymetry

Old implementation: Step 2

Sequential implementation because:

• Required to handle small neighborhoods (because
interpn used to be very sensitive to cutout size)

• Timings of interrupts are unknown a priori

Old implementation
Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

Old implementation: Step 3

NY

NX

NZ
Load sequential property
fields and interpolate

Old implementation
Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis

Old implementation: Step 4

Save time series of particle
locations and properties

Old implementation
Four stages:

1. Initialization: model domain, grid, bathymetry and initial particle
positions

2. Calculate particle trajectories: for predetermined length of time,
trajectory is calculated based on ocean model velocity fields

3. Particle property extraction: Temperature/salinity along trajectory
are found by interpolation of model T/S fields

4. Particles positions and T/S info saved for further analysis

Large potential gain by vectorization & parallelization of steps 2 and 3

New implementation

Gelderloos et al., 2016a

Interpolation improvements (I)

CPU: local small array no
longer necessary

GPU: requires loading data
into GPU memory —>
faster for >1000 particles

NY

NX

NZ

Removed cell boundary
interrupts:
(1) Faster
(2) More accurate
(3) Simpler code

Interpolation improvements (II)

Interpolation improvements (III)

Vectorization of ocean-floor
impingement interpolations
yields a 160x speedup for
106 particles

(Cubic interpolation only
possible in CPU)

Bucket-List Algorithm

2D

3D

3D

Parallelizing part 3

Vectorization and parallelization (with parfor)

40 particles test case
yields 10x speedup

0: original
1: native little endian + fread
2: vectorized
3: parallelized

C/W: cold/warm cache

Planned improvements

Speedup:
1. Implement Bucket-List algorithm
2. Use sparse array (disregard grid cells under the ocean floor)
3. Use databases and space-filling curves

 Accuracy:
1. Use different ODE solver for interior and boundary-sliding particle trajectories (with
different tolerance settings)

Conclusions
• We built a particle-tracking code with accurate  

boundary-sliding representation  

• Vectorization of the particle-tracking part of the algorithm
has yielded a 3500 times speedup for 103 particles (5000 for
106 particles)

• Vectorization of ocean-floor impingement has yielded an
additional factor 6 for 103 particles (160 for 106 particles)  

• Vectorization/parallelization of the property-extraction part of
the algorithm has yielded a 10x speedup for 40 particles

Future Work

• Make the particle-tracking algorithm
publicly available

• Improve the back-end database
environment

• Enhance post-processing functionality
• Scale up to benchmark global ocean

circulation solution
Koszalka et al., 2013; Magaldi & Haine, 2016

