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Ultra-high-res. ocean models are 
now highly realistic, revealing,

Source: Chris Hill, MIT, http://mitgcm.org, 
Haine, 2010.

About 1010-11 numbers per snapshot 
103-6 snapshots stored per run 
= 1013-17 nos. per run 

http://mitgcm.org


Origin Temperature

Salinity Depth

and need good tools for  
post processing

Gelderloos et al., 2016b



Lagrangian particle models

Two types of offline Lagrangian particle-tracking models 
available: 

1. Analytical models: Very fast, but assume stationarity 
between model samples —> inaccurate 

2. Numerical model: CMS most widely used example, 
needs Unix and unphysical solid boundary conditions 

Our code is numerical with correct boundary-sliding 
conditions, but very slow —> needs speeding up 



Old implementation

Koszalka et al., 2013



Old implementation
Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions



Old implementation: Step 1
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Old implementation: Step 1
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Seed particles in the domain



Old implementation
Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions 

2. Calculate particle trajectories: for predetermined length of time, 
trajectory is calculated based on ocean model velocity fields

Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions



Old implementation: Step 2
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Create a local environment 
around the particle (necessary 
for old interpn function)

Load 2 sequential 
3D velocity fields



Old implementation: Step 2
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Calculate next piece 
of the trajectory

Explicit Runge-Kutta (2,3)-pair ODE 
solver for moderately stiff problems



Old implementation: Step 2
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Step forward



Old implementation: Step 2
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Interrupt if: 
1) particle moves to another 

cell  
2) particle hits the 

bathymetry



Old implementation: Step 2
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Get new local 
neighborhood

Interrupt if: 
1) particle moves to another 

cell 



Old implementation: Step 2

Switch to along-bathymetry 
sliding mode

Interrupt if: 
2) particle hits the 
bathymetry



Old implementation: Step 2

Sequential implementation because: 

• Required to handle small neighborhoods (because 
interpn used to be very sensitive to cutout size) 

• Timings of interrupts are unknown a priori 



Old implementation
Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions 

2. Calculate particle trajectories: for predetermined length of time, 
trajectory is calculated based on ocean model velocity fields 

3. Particle property extraction: Temperature/salinity along trajectory 
are found by interpolation of model T/S fields



Old implementation: Step 3
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Load sequential property 
fields and interpolate



Old implementation
Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions 

2. Calculate particle trajectories: for predetermined length of time, 
trajectory is calculated based on ocean model velocity fields 

3. Particle property extraction: Temperature/salinity along trajectory 
are found by interpolation of model T/S fields 

4. Particles positions and T/S info saved for further analysis 



Old implementation: Step 4

Save time series of particle 
locations and properties



Old implementation
Four stages: 

1. Initialization: model domain, grid, bathymetry and initial particle 
positions 

2. Calculate particle trajectories: for predetermined length of time, 
trajectory is calculated based on ocean model velocity fields 

3. Particle property extraction: Temperature/salinity along trajectory 
are found by interpolation of model T/S fields 

4. Particles positions and T/S info saved for further analysis 

Large potential gain by vectorization & parallelization of steps 2 and 3



New implementation

Gelderloos et al., 2016a



Interpolation improvements  (I)

CPU: local small array no 
longer necessary 

GPU: requires loading data 
into GPU memory —> 
faster for >1000 particles



NY

NX

NZ

Removed cell boundary 
interrupts: 
(1) Faster 
(2) More accurate 
(3) Simpler code

Interpolation improvements  (II)



Interpolation improvements  (III)

Vectorization of ocean-floor 
impingement interpolations 
yields a 160x speedup for 
106 particles 

(Cubic interpolation only 
possible in CPU)



Bucket-List Algorithm

2D

3D

3D



Parallelizing part 3

Vectorization and parallelization (with parfor) 

40 particles test case 
yields 10x speedup

0: original 
1: native little endian + fread
2: vectorized 
3: parallelized 

C/W: cold/warm cache



Planned improvements

Speedup:  
1. Implement Bucket-List algorithm 
2. Use sparse array (disregard grid cells under the ocean floor) 
3. Use databases and space-filling curves 

  Accuracy: 
1. Use different ODE solver for interior and boundary-sliding particle trajectories (with 
different tolerance settings) 



Conclusions
• We built a particle-tracking code with accurate  

boundary-sliding representation  
  

• Vectorization of the particle-tracking part of the algorithm 
has yielded a 3500 times speedup for 103 particles (5000 for 
106 particles) 

• Vectorization of ocean-floor impingement has yielded an 
additional factor 6 for 103 particles (160 for 106 particles)  

• Vectorization/parallelization of the property-extraction part of 
the algorithm has yielded a 10x speedup for 40 particles 



Future Work

• Make the particle-tracking algorithm 
publicly available 

• Improve the back-end database 
environment 

• Enhance post-processing functionality 
• Scale up to benchmark global ocean 

circulation solution
Koszalka et al., 2013; Magaldi & Haine, 2016


