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The Background



X-Info
• The evolution of X-Info and Comp-X for each discipline X
• How to codify and represent our knowledge

• Data ingest  
• Managing a petabyte
• Common schema
• How to organize it 
• How to reorganize it
• How to share with others

• Query and Vis tools 
• Building and executing models
• Integrating data and Literature  
• Documenting experiments
• Curation and long-term 

preservation

The Generic Problems
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What X-info Needs from Computer Science 
(not drawn to scale)
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Thousand years ago – Experimental Science

• Description of natural phenomena

Last few hundred years – Theoretical Science
• Newton’s Laws, Maxwell’s Equations…

Last few decades – Computational Science

• Simulation of complex phenomena

Today – Data-Intensive Science

• Scientists overwhelmed with data sets

from many different sources 

• Data captured by instruments

• Data generated by simulations

• Data generated by sensor networks

e-Science and the Fourth Paradigm
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eScience is the set of tools and technologies
to support data federation and collaboration

• For analysis and data mining
• For data visualization and exploration
• For scholarly communication and dissemination

With thanks to Jim Gray

http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif


Artificial Neural Networks 

Input Layer Hidden Layer Output Layer



Machine Learning
• Neural networks are one example of a 

Machine Learning (ML) algorithm

• Deep Neural Networks are now exciting the 
whole of the IT industry since they enable 
us to:

• Build computing systems that 
improve with experience

• Solve extremely hard problems

• Extract more value from Big Data

• Approach human intelligence
e.g. natural language processing

• The change in the Word Error Rate (WER) 
with time for the NIST “Switchboard” data. 

• This shows the dramatic improvement 
made in the last few years using Deep 
Neural Networks









Data Science and the UK
Science and Technology 

Facilities Council



UK Science and Technology Facilities Council (STFC)

Daresbury Laboratory
Sci-Tech Dasresbury Campus
Warrington, Cheshire



Big Data and Cognitive Computing:
Hartree Centre collaboration with IBM Research 



Central Laser Facility
ISIS (Spallation

Neutron Source)

Diamond Light Source

LHC Tier 1 computing
JASMIN Super-Data-Cluster

Rutherford Appleton Lab and the Harwell Campus





• Assist universities in developing, 
maintaining and distributing 
computer programs

• Promoting the best computational 
methods 

• Each focuses on a specific area of 
research

• Funded by the UK's EPSRC, PPARC 
and BBSRC Research Councils

Collaborative Computational 
Projects: The CCP's 







The Diamond Synchrotron



Diamond Light Source



Science Examples

Pharmaceutical 
manufacture  & processing

Casting aluminium 

Structure of the Histamine 
H1 receptor 

Non-destructive imaging of 
fossils



• 2007 No detector faster than ~10 MB/sec

• 2009 Pilatus 6M system 60 MB/s

• 2011 25Hz Pilatus 6M 150 MB/s

• 2013 100Hz Pilatus 6M 600 MB/sec

• 2013 ~10 beamlines with 10 GbE
detectors (mainly Pilatus and PCO Edge)

• 2016 Percival detector 6GB/sec
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Thanks to Mark Heron

Cumulative Amount of Data Generated By Diamond
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Nucleous

Cryo-SXT Data

● Noisy data, missing wedge artifacts, missing

boundaries

● Tens to hundreds of organelles per dataset

● Tedious to manually annotate

● Cell types can look different

● Few previous annotations available

● Automated techniques usually fail

Segmentation

Neuronal-like mammalian cell line; single 
slice

Nucleous

Cytoplasm

Challenges:

Data

● B24: Cryo Transmission X-ray Microscopy beamline at DLS

● Data Collection: Tilt series from ±65° with 0.5° step size

● Reconstructed volumes up to 1000x1000x600 voxels

● Voxel resolution: ~40nm currently

● Total depth: up to 10μm

● GOAL: Study structure and morphological changes of whole cells

3D Volume Data

Segmentation of Cryo-soft X-ray 
Tomography (Cryo-SXT) data

Computer Vision
Laboratory

B24 beamline
Data Analysis Software Group

scientificsoftware@diamond.ac.uk



Data Preprocessing

Raw Slice Gaussian Filter Total Variation

Data Representation

SuperVoxels (SV) SV Boundaries

SuperVoxels: 
● Groups of similar and adjacent voxels in 3D
● Preserve volume boundaries
● Reduce noise when representing data
● Reduce problem complexity several orders of magnitude
● Use Local clustering in {xyz + λ * intensity} space

Nucleous

Workflow

Data 
Preprocessing

Data 
Representation

Feature Extraction

User’s Manual 
Segmentations

Classification

Refinement

scientificsoftware@diamond.ac.uk



Data Representation

Voxel Grid Supervoxel 
Graph

946 x 946 x 200 = 180M voxels 180M / (10x10x10) = 180K supervoxels

Initial Grid with uniformly
sampled seeds

Local k-means in a small 
window around seeds

Nucleous

Workflow

Data 
Preprocessing

Data 
Representation

Feature Extraction

User’s Manual 
Segmentations

Classification

Refinement

scientificsoftware@diamond.ac.uk



Nucleous

Workflow

Data 
Preprocessing

Data 
Representation

Feature Extraction

User’s Manual 
Segmentations

Classification

Feature Extraction
Features are extracted from voxels to represent their appearance: 

● Intensity-based filters (Gaussian Convolutions)

● Textural filters (eigenvalues of Hessian and Structure Tensor)

User Annotation + Machine Learning

Refinement

User Annotations
Predictions Refinement

Using a few user annotations along the volume as an input:

● A machine learning classifier (i.e. Random Forest) is trained to 

discriminate between different classes (i.e. Nucleus and Cytoplasm) 

and predict the class of each SuperVoxel in the volume.

● A Markov Random Field (MRF) is then used to refine the predictions.
scientificsoftware@diamond.ac.uk



SuRVoS Workbench
(Su)per-(R)egion (Vo)lume (S)egmentation

Coming soon: https://github.com/DiamondLightSource/SuRVoS

Imanol Luengo <imanol.luengo@nottingham.ac.uk>, Michele C. Darrow, Matthew C. 
Spink, Ying Sun, Wei Dai, Cynthia Y. He, Wah Chiu, Elizabeth Duke, Mark Basham, 

Andrew P. French, Alun W. Ashton

scientificsoftware@diamond.ac.uk



The ISIS Neutron and Muon Facility



ISIS



• 30 neutron instruments

• 3 muon instruments

• 1400 individual users per year making 3000 visits 

• 800 experiments per year resulting in 450 publications

• Diverse science

• Fundamental condensed matter physics

• Functional materials e.g. multiferroics, spintronics

• Chemical spectroscopy e.g. catalysis and hydrogen storage

• Engineering e.g. stress and fatigue in power plants and 

transportation

• Solvents in industry

• Structure of pharmaceutical compounds, biological 

membranes

ISIS



Peak Assignment in Inelastic 
Neutron Scattering

• Vibrational motion of atoms 
crucial for many properties of a 
material -e.g., how well it 
conducts electricity or heat

• Peaks in INS spectrum correspond 
to specific atomic vibrations

• Peak assignment: what specific 
vibrational motions of atoms give 
rise to specific peaks ?

INS Spectrum of crystalline benzene

S. Parker and S. Mukhopadhyay (ISIS)



Modelling & Simulation for
INS Peak Assignment 
Calculated INS Spectrum of crystalline benzene

• INS spectra can be computed for a given 
atomic structure

• Calculations allow us to see what specific 
vibrational motion of atoms occur, and at 
what frequency

L. Liborio 



Materials Workbench

K. Dymkowski



The Central Laser Facility



• National imaging facility with peer-
reviewed, funded access

• Located in Research Complex at 
Harwell

• Cluster of microscopes and lasers 
and expert end-to-end 
multidisciplinary support

• Operations and some development 
funded by STFC

• Key developments funded through 
external grant – BBSRC, MRC

OCTOPUS Facility in the CLF

With thanks to Dan Rolfe



Example: EGFR cell signalling in cancer
• Driven OCTOPUS single molecule 

developments

• User in plant cell imaging now 
catching up in scale of challenge

• Part of a PhD project:

• 1 experimental technique

• 50 experimental conditions

• 30 datasets for each condition

• 1000 single molecule tracks for 
each condition

• Multiple properties & events 
of interest in each track

• Comparison of just one 
property…

With thanks to Dan Rolfe





Large scale comparisons

With thanks to Dan Rolfe



Multidimensional single molecule tracking

• Automated registration & tracking in 
multiple channels

• Computer vision

• Bayesian feature detection from 
astronomical galaxy detection

• Instrumental metadata from acquisition 

• Flexible specification of many 
instrument configurations

Rolfe et al 2011, Euro Biophys J, 2011
With thanks to Dan Rolfe



The JASMIN Environmental Science
Super Data Cluster







Large data sets: satellite observations





Why JASMIN?

• Urgency to provide better environmental 
predictions

• Need for higher-resolution models

• HPC to perform the computation

• Huge increase in observational capability/capacity

But…

• Massive storage requirement: observational data 
transfer, storage, processing

• Massive raw data output from prediction models

• Huge requirement to process raw model output 
into usable predictions (post-processing)

Hence JASMIN…

ARCHER supercomputer (EPSRC/NERC)

JAMSIN (STFC/Stephen Kill)



JASMIN infrastructure
Part data store, part HPC cluster, part private cloud…



JC2-LSW1 JC2-LSW1 JC2-LSW1JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1JC2-LSW1 JC2-LSW1 JC2-LSW1

48 * 16 = 768 10GbE Non-blocking
16 x 12 x 40GbE = 192 40GbE ports

S1036 = 32 x 40GbE

JC2-LSW1JC2-LSW1

JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1

16 x MSX1024B-1BFS
48x10GBE + 12 40 GbE

16 x 12 40GbE = 192 Ports / 32 = 6
Total 192 40 GbE Cable

1,104 x 10GbE Ports CLOS L3 ECMP OSPF

• ~1,200 Ports expansion 

• Max 36 leaf switches :1,728 Ports @ 10GbE

• Non-Blocking, Zero Contention (48x10Gb = 12x 40Gb uplinks)

• Low Latency (250nS L3 / per switch/router) 7-10uS MPI

954 Routes

954 Routes

Non-blocking, low latency, CLOS Tree Network



JASMIN “Science DMZ” Architecture

Supercomputer CenterSimple Science DMZ

http://fasterdata.es.net/science-dmz-architecture



The UK Met Office UPSCALE campaign
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Example Data Analysis

• Tropical cyclone tracking has 
become routine; 50 years of 
N512 data can be processed 
in 50 jobs in one day

• Eddy vectors; analysis we would not attempt on a 
server/workstation (total of 3 months of processor time and 
~40 GB memory needed) completed in 24 hours in 1,600 batch 
jobs 

• JASMIN/LOTUS combination has clearly demonstrated the 
value of cluster computing to data processing and analysis. 

M Roberts et al: Journal of Climate 28 (2), 574-596



The Ada Lovelace Center



The Experimental Data Challenge?
• Data rates are increasing, facilities science more data intensive

• Handling and processing data has become a bottleneck to produce science

• Need to compare with complex models and simulations to interpret the data 

• Computing provision at home-institution highly variable
• Consistent access to HTC/HPC to process and interpret experimental data

• Computational algorithms more specialised

• More users without the facilities science background

 Need access to data, compute and software services
• Allow more timely processing of data

• Use of HPC routine not “tour de force”

• Generate more and better science



Ada Lovelace Centre

The ALC will significantly enhance our capability to support the Facilities’ 
science programme:

• Theme 1: Increases capacity in advanced software development for 
data analysis and interpretation

• Theme 2: Develop new generation of scientific data experts and 
scientific software engineers who can interact with science domain 
experts

• Theme 3: Provide significant compute infrastructure for managing, 
analysing and simulating the data generated by the facilities and for 
designing next generation Big-Science experiments

 Focus is the science drivers and computational needs of Facilities



ALC Pathfinder: Tomographic Reconstruction
• Support in-experiment and post-

experiment tomographic reconstruction

• Round-trip the data to HPC CPU/GPU clusters 
in experiment time

• Tomographic image reconstruction toolbox 
with different algorithms 

• High throughput image reconstruction 
framework – time scheduled

• Visualisation on the beamline or remote 
• An integral component of IMAT’s in-experiment 

data analysis capability through the ISIS Mantid
software suite

• Goal is to maximise the science from data 
collected on facility instruments

Image

Processing

Experiment

Visualisation

STFC Scientific Computing: Erica Yang, Srikanth Nagella, Martin Turner, Derek Ross

STFC ISIS: Winfried Kockelmann, Genoveva Burca, Federico Montesino Pouzols

DLS: Mark Basham

IMAT

SCARF

MANTID



ALC Pathfinder: CCP4-DAaaS

SCD Cloud
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CCP4 – Macro-Crystallography suite
• proteins, viruses and nucleic acids
• determine macromolecular 

structures by X-ray crystallography
• Used by DLS users

• But need  post-experimental 
access 

Data Analysis as a Service
- Remote access to data and 

compute via SCD Cloud 
- CCP4 s/w maintained on Cloud 

via VM packaging and 
distribution (CVMFS)

- User Portal provides access to 
right data and compute and 
workflows

Frazer Barnsley, Shirley Crompton, CCP4, et al

http://www.ccp4.ac.uk/index.php


The ALC - Towards a “Super-facility”?

“A network of connected facilities, software and expertise
to enable new modes of discovery”

Katie Antypas, Inder Monga, Lawrence Berkeley National Laboratory

Infrastructure + Software + Expertise

With Common Interfaces and  Transparent Access

Data 

Catalogue

Petabyte

Data storage
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VisualisationData 
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New Opportunities: Reproducible Science

• Traceable science
• Preservation
• Provenance
• Publishing

• A tool for the user
• Tracking progress

• ‘RARE’ research
• Robust
• Accountable
• Reproducible
• Explainable

 ALC can build in support for reproducible science

SXD Single 
crystal 

diffractome
ter

ISIS Beamtime Application:
SXD Round: 2010 1

RB1010274 Reversible B-H Bond Activation at Cationic 
Rh(III) Centres: Structural Characterization of Key 
Hydrogen-containing Intermediates

PI: Aldridge Dr S University of Oxford
Department of Chemistry

Data DOIs

Perform 
research & 
gather data

Analyse 
collected data

Manage & 
curate 

research data

Publish 
results 

Crystallise 
research idea

Seek & 
gain 

funding 



Jim Gray’s Vision: All Scientific Data Online

• Many disciplines overlap and use data 
from other sciences. 

• Internet can unify all literature and data

• Go from literature to computation to 
data back to literature. 

• Information at your fingertips –
For everyone, everywhere

• Increase Scientific Information 
Velocity

• Huge increase in Science Productivity

(From Jim Gray’s last talk)

Literature

Derived and 
recombined data

Raw Data
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