



e-Science for Cancer Prevention and Control

# **A PARALLEL MICROSIMULATION PACKAGE** FOR MODELLING CANCER SCREENING POLICIES

eScience, 2016-10-26, Baltimore

Andreas Karlsson

andreas.a.karlsson@ki.se

Co-authors: Niten Olofsson, Erwin Laure & Mark Clements



# OUTLINE

- Microsimulation R Package
  - Parallelisation four approaches
  - Case Study prostate cancer screening

# **MICROSIMULATION R PACKAGE**

- Our package: https://github.com/mclements/microsimulation
  - Open source tool for planning cancer screening policies
  - Fast and flexible discrete-event simulation (DES)
  - Common random number support
  - In-simulation report reductions
  - Support for distributed/shared memory parallelism



# **NOTABLE RELATED WORK**

- Closed source MODGEN microsimulation language by Statistics Canada
- ... and recent open source re-implementation Openm++<sup>2</sup>
- simmer DES library for specific process-oriented simulations, with model specification in R and a C++ core<sup>3</sup>

# **OPEN SOURCE INFRASTRUCTURE**

### RngStreams

a random number streams library for C++<sup>4</sup>

### SSIM

a C++ discrete event simulation library. The library defines the basic interface for a process and provides the main simulation scheduler <sup>5</sup>

### **Boost libraries**

for R library to be compliant with C++98<sup>6</sup>

### Rcpp

R/C++ interface library, extended to wrap vectors of tuples, and maps using tuples as keys<sup>7</sup>

# PSEUDOCODE

for j in 1...J do // iterate over people
schedule events // initialise events
while queue is not empty do
event = pop(queue)
handle event: begin // new state?
schedule new events
write to report
end
end
end

# OUTLINE

- Microsimulation R Package
- Parallelisation four approaches
  - Case Study prostate cancer screening

# PARALLELISATION

- Microsimulations are computationally intensive, particularly for model calibration.
- Four different methods of parallelisation:
  - 1. Shared memory: R-parallel
  - 2. Shared memory: OpenMP
  - 3. Distributed memory: MPI
  - 4. Hybrid: OpenMP/MPI

## **1. SHARED MEMORY: R-PARALLEL**





## 2. SHARED MEMORY: OPENMP



# **3. DISTRIBUTED MEMORY: MPI**



# 4. HYBRID: OPENMP/MPI



# BENCHMARK

- Eight core nodes on 16 node cluster
- Software:
  - OpenMP with gcc version 4.8.1
  - R version 3.0.2
  - Open MPI version 1.4.1
- Model further described in case study
- Simulation size  $10^7$



## PERFORMANCE



### Implementation

- R parallel
- OpenMP
- MPI
- OpenMP/MPI

## EFFICIENCY



### Implementation

- R parallel
- OpenMP
- MPI
- OpenMP/MPI

# OUTLINE

- Microsimulation R Package
- Parallelisation four approaches
- Case Study prostate cancer screening



This shows the prostate and nearby organs



This shows the inside of the prostate, urethra rectum, and bladder.

# **CASE STUDY**

- Prostate cancer is the most common cancer diagnosis for men in both Sweden and the US
- Opportunistic prostate-specific antigen (PSA) testing causes over-diagnosis and over-treatment
- Cost-effectiveness analysis (CEA) can be used to plan cancer screening policies

# ADAPTING THE FHCRC MODEL TO SWEDEN

- Based on a prostate cancer screening model from the Fred Hutchinson Cancer Research Center (FHCRC)<sup>8</sup>
- *Incorporate* Swedish input data
- Calibrate (or fit) parameters using Swedish calibration targets
- Validate the model predictions using Swedish data

### NATURAL HISTORY MODELLING

- A natural history (NH) model describes the course from being healthy, to disease onset, progression and death. The model is motivated by biological mechanisms.
- Natural history modelling can be used to:
  - to generalise results from randomised controlled trials (RCTs)
  - predict effects for different screening protocols
  - calculate cost-effectiveness using predicted lifetime costs and quality of life.

# **DATA SOURCES**

| Study name | Description                                                                                                                                                   | Study size   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| STHLM0     | Population of men with a PSA test in Stockholm from 2003. Linked with registrations, deaths, migration, prescribed drugs etc.                                 | 400,000 men  |
| STHLM3     | Diagnostic trial for biomarker development of a prostate cancer screening test in 2013-2014.                                                                  | 60,000 men   |
| PCBaSe     | Survival at 10 and 15 years by PSA, grade and<br>stage. PCBaSe links the national quality<br>register on prostate cancer with the cause of<br>death register. | 80,000 cases |

### **RESEARCH QUESTION: HOW SHOULD WE PLAN FOR BETTER PROSTATE CANCER TESTING?**

Parameters affecting screening include:

- Test characteristics for different tests (e.g. PSA, S3M, 4K and PHI)
- Screening ages
- Re-screening intervals
- Screening history
- Screening test compliance (if invitations are organised)
- Biopsy compliance
- Treatment effectiveness
- etc...

### **MODELLED STATES**





# **MICROSIMULATION TRACES AND SCREENING**





# PREDICTIONS

- PSA testing scenarios:
  - No screening
  - 2-yearly, ages 50-70
  - 4-yearly, ages 50-70
  - Current
- Outcomes:
  - Prevalence
  - Mortality rate ratios
  - Cost-effectiveness

21.1

## PREVALENCE



### Screening pattern

- No screening
- 2-yearly
- 4-yearly
- Current

## **MORTALITY RATE RATIOS**



### Screening pattern

- No screening
- 2-yearly
- 4-yearly
- Current

# **COST-EFFECTIVENESS INTRO**

 The cost-effectiveness from the microsimulation can be described using utilities and costs for screening intervention k, such that:

$$egin{aligned} ext{Effectiveness}_k =& rac{1}{n} \sum_{i=1}^n \int_0^\infty rac{dU_{ik}}{(1+q)} \ ext{Costs}_k =& rac{1}{n} \sum_{i=1}^n \int_0^\infty rac{dC_{ik}}{(1+q)} \end{aligned}$$

where we simulate for n individuals with index i, with individual-based cumulative utilities  $U_{ik}(t)$  and costs  $C_{ik}(t)$  at time t, with discounting  $\delta$  (e.g.  $\delta = 0.03$  ).

(t) $\delta)^t$  $rac{(t)}{\delta)^t}$ 

# **COST-EFFECTIVENESS**



Discounted costs (SEK), 1USD~9SEK

# CONCLUSIONS

- Microsimulation is increasingly being used to plan cancer screening (e.g. by CISNET, NICE, USPSTF).
- Four-yearly testing would reduce costs and have similar effectiveness as current PSA testing
- Coupling R and C++ eases software dissemination and allows for high-level R methods
- The performance of the hybrid OpenMP/MPI came at the cost of significant refactoring

# **THANK YOU ALL FOR LISTENING!**

We acknowledge funding support from the Swedish eScience Research Centre, the Nordic Information for Action eScience Center and the Swedish Cancerfonden (CAN 2012/765).

### BIBLIOGRAPHY

- 1. Statistics Canada, MODGEN Version 10.1.0: Developer's Guide, (2012). link. doi.
- 2. Gribble & Cherkassky, OpenM++: open source microsimulation platform, (2016). link. doi. Accessed: 2016-05-26
- 3. Bart Smeets & Iñaki Ucar, simmer: Discrete-Event Simulation for R, (2016). link. doi. Accessed: 2016-05-26
- 4. L'Ecuyer, Simard, Chen & Kelton, An Object-Oriented Random-Number Package with Many Long Streams and Substreams, Operations Research, 50(6), 1073-1075 (2002). link. doi.
- 5. Antonio Carzaniga, SSim a simple discrete-event simulation library., (2015). link. doi.
- 6. Schling, The Boost C++ Libraries, XML Press (2011).
- 7. Dirk Eddelbuettel & Romain Franccois, Rcpp: Seamless R and C++ Integration, Journal of Statistical Software, 40(8), 1--18 (2011). link. doi.
- 8. Gulati, Inoue, Katcher, Hazelton & Etzioni, Calibrating disease progression models using population data: a critical precursor to policy development in cancer control, Biostatistics, **11(4)**, 707--719 (2010). link. doi.
- 9. Etzioni, Gulati, Falcon & Penson, Impact of PSA screening on the incidence of advanced stage prostate cancer in the United States: a surveillance modeling approach, Med Decis Making, 28(), 323--31 (2008). link. doi.

