MOHA: Many-Task Computing meets
the Big Data Platform

Jik-Soo Kim*, Cao Ngu}fen*i Soonwook Hwang*f

* National Institute of Supercomputing and Networking at KISTI
Daejeon, Republic of Korea

Email: {jiksoo.kim, cao, hwang } @kisti.re.kr

f University of Science & Technology (UST)
Daejeon, Republic of Korea

Table of Contents KiSTi

= |Introduction

= Design and Implementation of MOHA

= Evaluation

= Conclusion and Future Work

Slide #2

KisTi

Introduction

= Distributed/Parallel computing systems to support
various types of challenging applications

* HTC (High-Throughput Computing) for relatively long
running applications consisting of loosely-coupled tasks

. e® ©
BiZinc HICond%r 511d oo

* HPC (High-Performance Computing) targets efficiently
processing tightly-coupled parallel tasks ’ Ml)l

* DIC (Data-intensive Computing) mainly focuses on
effectively leveraging distributed storage systems a nd

parallel processing frameworks ‘ha e ‘

u i
g
& E’E |

Slide #3

Ki

Introduction

= Many-Task Computing (MTC) as a new computing
paradigm [l. Raicu, I. Foster, Y. Zhao, MTAGS’08]
* Avery large number of tasks (millions or even billions)
* Relatively short per task execution times (sec to min)
* Data intensive tasks (i.e., tens of MB of /O per second)

* A large variance of task execution times (i.e., ranging from
hundreds of milliseconds to hours)

* Communication-intensive, however, not based on message
passing interface but through files

astronomy, physics,
pharmaceuticals,
chemistry, etc.

Slide #4

Introduction MOTi

Many-Task Computing
Applications

astronomy, physics,
pharmaceuticals,
chemistry, etc.

Data intensive tasks

5 Plooniaa A large variance of task | bl
6 “7” . 301 millions or . . TR e . tens of MB
: “ even billions execution times | 4 : W 8 of 1/0 per
. ! b) d
- from hundreds secon
. - — of
Relatively short per task "NV milliseconds o .
seconds to
minutes

High-Performance Task Dvnamic Load Balancin Another Type of Data-intensive
Dispatching ¥ g Workload

Introduction M

= Hadoop, the de facto standard “Big Data” store and
processing infrastructure

* with the advent of Apache Hadoop YARN, Hadoop 2.0 is
evolving into multi-use data platform

v harness various types of data processing workflows
v’ decouple application-level scheduling and resource management

Single Use System Multi Use Data Platform
Batch Apps Batch, Interactive, Online, Streaming, ...
HADOOP 1.0 HADOOP 2.0
MapReduceu Tez L Others
(batch) (interactive) (varied
MapReduce T
(cluster resfurce management YAR N

& data processing) (operating system: cluster resource management)

Slide #6

P '

Introduction MOTi

i

= This paper presents

* MOHA (Many-task computing On HAdoop) framework
which can effectively combine Many-Task Computing
technologies with the existing Big Data platform Hadoop

v developed as one of Hadoop YARN applications

v’ transparently cohost existing MTC applications with other Big Data
processing frameworks in a single Hadoop cluster

New framework

in Hadoop 2.0
lications
A l MTC Multi-level

| Direct Scripting SQL Cascading NoSQL Stream Schedullng

APl < s Pg Hive Scal Other HBase Storm Other Others
ba ISV hazile ISV

> MOHA

| \pateh Batch & Interactive Real-Time for MTC
Engine <L Mancirice Tez Slider
{ YARN : Data Operating System Hadoop YARN

Resource
(Hadoop Distributed File System) Management

System <
HDFS

Slide #7

Related Work KFS

= GERBIL: MPI+YARN J[L. Xu, M. Li, A. R. Butt, CCGrid’15]

* A framework for transparently co-hosting unmodified MPI
applications alongside MapReduce applications
v’ exploits YARN as the model agnostic resource negotiator
v’ provides an easy-to-use interface to the users

v allows realization of rich data analytics workflows as well as efficient
data sharing between the MPI and MapReduce models within a
single cluster

Mode 0 MNode 1 Mode 2 Mode n
N (o ICTN [J— (-7 [(o} B BT
: C 1en Pl
Usar 1: command-line anguments L eroil- @ . =
__j 5: Start AM & ‘ @ aus @
¥ o Resource Manager | Registration Req Node Manager G
2: Application Request - > - e ——
3: Response with Ame Scheduler 6: Resource Info. ; MP;I M]
YARM Client |- . 7: Request Containers Application Master C:__ LI_E__:)
4: Application Application Manager |g: Assign Containers = - - —
Submission Context e (1) The user submits a job request. {MapReduce Container <_ i
(2) Gerbil-client informs RM the job submission. Gerbil-container <l >
. I]]) @ HM |ElL.II'II3|'IE-S. GEFDIl-ﬂM ||-| acontal"er— e rrrorrrrr PO
Fig. 1. Steps of launching an application in YARN. (4) Gerbil-AM requests for Gerbil-containers and assign MPI processes.

Fig. 2. GERBIL architecture for running MPI on YARN.

Slide #8

Related Work KIS

Nuclear Physics

Bioinformatics

Virtual Screening

Drug Repositioning

_ Particle Physics

WS-Interface

DB mgr Account mgr API Job mgr API Monitoringmgr API
A SN Account Job Manager Monitoring

o, . \—/4 Manager _ Manager

¢ g\ 13/‘ | User Account . | Ayeen ' l\v*
+ & - s (e
= | = igs
Q) g A Data mgr API N Agent
Q) (/) User Data A A Manager
7, Manager / A

. \
1 Job SpllttEf e Submission

/ ‘».—
Auth Storage s
" \ S Vengne

FTP 1

v rﬂy - l

\‘ B g
Storage R v

Supercomputers Cluster Grids - Clouds Slide #9

Table of Contents KiSTi

= Design and Implementation of MOHA

Slide #10

X

Hadoop YARN Execution Model

= YARN separates all of its functionality into two layers
» platform layer is responsible for resource management (first-

level scheduling)
v'Resource Manager, Node Manager

* framework layer coordinates application execution (second-
level scheduling)

v ApplicationMaster = New MOHA Framework !

~

Hadoop 1.0

/

\

Hadoop 2.0

Node
Resource Manager /’,,— Manager
.
27 st e—
Job Tracker Resource . Y SIS\ 7 \
Scheduling P f\\CMpp Mastg
: P - —
Job Tracker P (// Tz \
lob & Task Node Manager (cli 5
[Client »--_
Mgmt E e 1/ __________ ¥ i LT Node
) Resource — Resource [€~ 7~ Manager
Tas Monitoring 2 Manager
Compute & Enforce A _.-----"". 24 g i /
(Client =~ i e
Resource \\ (App Master) [Con@
Scheduling Platform Layer 7. O N—"/
. - R
\\\’ — -
Application Master (1 N
MapReduce Status ——— Node
Job & Task Job Submission ------- > Manager
- i Node Status ————»-
Platform + Application Framework ROSOUFCe REQUOSE « < ---=+3 5 —— L
- - (Container (Coit_aw
\ Framework Layer / S — N

Slide #11

MOHA System Architecture

MOHA Client

submit

Job Submission & !
__.--- Data Staging g
YARN
Distributed Data Processing
Resource Manager

Applications
Manager

Dlstributed Data Storage

Active
NameNode

Secondary
NameNode

Standby
NameNode

Hadoop Cluster

4
/' executes on
4

MOHA MOHA Manager

TaskExecutor

YARN
Container

Container

l
olliiiie 4

Job & Metadata Mgmt

Task Execution

‘_._._-

ApplicationMaster

YARN
Client

~
N\

|

|

™~

|

: \
I

|

e

/
7’

Launch
Application
Master

YARN

Slide #12

MOHA System Architecture M

* MOHA Client

* submit a MOHA job and performs data staging

v A MOHA job is a bag of tasks (i.e., a collection of multiple tasks)
= provides a simple JDL(Job Description Language)

v upload required data into the HDFS
= application input data, application executable, MOHA JAR, JDL etc.
* prepare an execution environment for the MOHA Manager
based on YARN'’s Resource Localization Mechanism

v’ required data are automatically downloaded and prepared for use in
the local working directories of containers by the NMs

. i icati YARN
YARN Client O Client Application Request , Distributed Data Processing
(9 'y N @ Response with ApplicationID Resource Manager
e “ Applications
) — ® Application Submission Context Manager

Slide #13

MOHA System Architecture MioTi

YARN
Distributed Data Processing

= MOHA Manager

Resource Manager
* create and launch MOHA job queues @
Apache Kafka i
AhigEhroughputdlstributed messaging system. ngll!‘eu @ Start Appl\/laster
* split a MOHA job into multiple tasks and o g reciSter
insert them into the queue capabilities
® Request
* get containers allocated and launch MOHA @Asgg:ta'”efs
TaskExecutors Comimers |
= MOHA TaskExecutor MOHA Manager

|
» pull the tasks from the MOHA job queues ©l||Jll|© o
and process them -
v’ monitor and report the task execution \ \

e
-

“Multi-level Scheduling Mechanism” Slide #14

pulling the tasks

\M‘ﬁ"
ﬂﬁ%

MOHA System Architecture

= Apache ActiveMQ

* a message broker in Java that
supports AMQP protocol

* does not support any message
delivery guarantee

e cannot scale very well in larger
systems

= Apache Kafka

* an open source, distributed
publish and consume service
introduced by LinkedIn

* gathers the logs from a large
number of servers, and feeds it
into HDFS or other analysis
clusters

* fully distributed and provides
high throughput

-

I ActiveMa |

=g
I
|

=

producer
("zerg.hydra")

broker |

T
2 —
[
Queue —@—r Consumer —@—r Listener
|
L J — S —
I
' 5| . .
|
Queue —*@—D Consumer —@—h Listener
|
- : S — S —
e
Px | active replica (id y) of partition x
Kafka cluster for topic "zerg.hydra"
active replica (id y) of partition x,
this broker is leader for that partition
(Yo)30
/c:nsumer
("zerg.hydra")
e
Slide #15

Discussion MOTi

= MTC applications typically require
* much larger numbers of tasks
* relatively short task execution times

* substantial amount of data operations with potential
interactions through files

Mhigh-performance task dispatching
M effective dynamic load balancing
Mdata-intensive workload support
= “seamless integration”

= Hadoop can be a viable choice for addressing these
challenging MTC applications

* technologies from MTC community should be effectively
converged into the ecosystem

Slide #16

)
- - KiSTi
Discussion c
= Potential Research Issues
* Scalable Job/Metadata Management
v removing potential performance bottleneck
* Dynamic Task Load Balancing
v’ Task bundling and Job profiling techniques
Task Management Metadata Task Management Metadata Task Management Metadata
Task Queue — L_Management—| == Taskoueve —| [Tamagement L || Management
R =] ~< Scalable Job &
Executor t Executor t Executor — [~ - ’ Metadata Management
—__ ~ Management_ (] _ & _W __ || Management | —_ 8l — — [+ Mafagement
_reskspicer ol S A | | (_Tesoieer Il sk soieer by i

Dynamic Load
Balancing

Pulling based
streamlined task
dispatching

Slide #17

™ P o ® ’
Discussion MOTi

= Potential Research Issues

 Data-aware resource allocation

v’ leveraging Hadoop’s data locality (computations close to data)

* Data Grouping & Declustering
v’ aggregating a groups of small files (“data bundle”)

YARN
T
1
-
J Locality Task \n/ - =
[e L s L
() \ ask task
— L2 & T X 2
Manager ’ b Task I—— .
(Job & Executor . R
Metadata \\\ n ’ % " b ;
. Management)
5 AY
-
YW Task \-ﬂ/ Task Bundling & Data Grouping can be closely
Executor
related

Slide #18

Table of Contents KiSTi

= Evaluation

Slide #19

Experimental Setup

= MOHA Testbed

* consists of 3 rack mount servers
v 2 * Intel Xeon E5-2620v3 CPUS (12 CPU cores)
v 64GB of main memory
v'2 * 1TB SATA HDD (1 for Linux, 1 for HDFS)

* Software stack
v Hortonworks Data Platform (HDP) 2.3.2
= automated install with Apache Ambari
v Operating Systems Requirements
= CentOS release 6.7 (Final)
v’ Identical environment with the Hortonworks Sandbox VIV

for VirtualBox
[for VirtualBox

HDP 2.3.2 on Hortonworks Sandbox
funs onitEBex eriware Mac & Windows [&

Try out the very latest features and functionality in Hadoop and its' ror Viware
3 VIVIW

ecosystem of projects with HDP 2.3 Follow the Step by Step Mac & Windows [j?r_ _’I'g’l'aia_r'_:j_

Tutorials. E— HDF 2.3.2 - 8.7 GB

Slide #20

Experimental Setup

© hdp01.Kkisti.re.kr
€ Back

MOHA Testbed Configurations including
Masters (YARN ResourceManager, HDFS
NameNode) and Slaves (YARN compenent + Add
NodeManager, HDFS DataNode) with C e ol stared -

Summary Configs Alerts ﬂ Versions

.. . @ ZooKeeper Server / ZooKeeper Started -
additional Hadoop service components
© DataNode / HDFS Started -
@ Metrics Monitor / Ambari Metrics Started -
@ hdp02.kisti.re.kr © NodeManager / YARN Started =
€ Back
Clients / HDFS Client, MapReduce2 Installed -
Summary Configs Aler‘tsm Versions Client. YARN Client
ZooKeeper Client
Components + Add e
: © hdp03.Kisti.re.kr
@ App Timeline Server / YARN Started - © Back
Summa Configs Alerts Versions
@ History Server / MapReduce2 Started - v ° 0
@ ResourceManager / YARN Started - Components + Aad
@ SNameNode / HDFS Started ~ @ Mefrics Collector / Ambari Mefrics Started >
& ZooKeeper Server / ZooKeeper Started - © ZooKeeper Server | Zookeeper Staried =
@ DataNode / HDFS Started - @ DataNode / HDFS Started =
@ Metrics Monitor / Ambari Metrics Started - @ Metrics Monitor / Ambari Metrics Started =
@ NodeManager / YARN Started - @ NodeManager / YARMN Started -
Clients / HDFS Client, MapReduce2 Installed = Clients / HDFS Client, MapReduce2 Installed -

Client, YARN Client, Client, YARN Client,
ZooKeeper Client ZooKeeper Client Slide #21

Experimental Setup

= Comparison Models
* YARN Distributed-Shell

v a simple YARN application that can execute shell commands (scripts)
on distributed containers in a Hadoop cluster

* MOHA-ActiveMQ
v’ ActiveMQ running on a single node with New 1/0 (NIO) Transport

 MOHA-Kafka
v’ 3 Kafka Brokers with minimum fetch size (64 bytes)

= Workload

* Microbenchmark
v'varying the # of “sleep 0” tasks

* Performance Metrics
v Elapsed time
v’ Task processing rate (# of tasks/sec)

Slide #22

Experimental Results Ki

= Performance Comparison (Total Elapsed Time)
* multiple resource (de)allocations in YARN Distributed-Shell

* multi-level scheduling mechanisms enable MOHA frameworks to
substantially reduce the cost of executing many tasks

Comarative Analysis of Task Dispatching Systems
400

350

A A
300
)
[
A 250
g 28.5x
= 200
®
a 150 8.4x
S
[T
100
50 v
|]] K
0
125 250 500 1000

of tasks

B YARN DistributedShell m MOHA-ActiveMQ (1 TaskExecutor) MOHA-Kafka (1 TaskExecutor) Slide #23

Experimental Results i

= Execution Time Breakdowns of MOHA Frameworks

* resource allocation time of a single container can take a
couple of seconds
* Overheads of MOHA-ActiveMQ are larger than MOHA-Kafka

v due to higher memory usages in MOHA-ActiveMQ’s TaskExecutor
= relatively heavyweight ActiveMQ consumer libraries

Analysis of MOHA-ActiveMQ Execution Time (Single TaskExecutor) Analysis of MOHA-Kafka Execution Time (Single TaskExecutor)

[0

[=]
IS
[l

n

o
IS
o

w
(V2]

— .30
2 212
[o
g 20 g 20
[= 15
10 10
5
, . — — — .1 L L I
125 250 500 1000 125 250 500 1000
of tasks # of tasks
M nit Time M Resource Alloc Time Task Processing Time Overhead M nit Time M Resource Alloc Time Task Processing Tim Overhead

Slide #24

Experimental Results Ki

= Task Dispatching Rate and Initialization Overhead

* MOHA-Kafka outperforms MOHA-ActiveMQ as the number
of TaskExecutors increases (also Falkon’s 15,000 tasks/sec)
v have not fully utilized Kafka’s task bundling functionality

* [nitialization Overhead
v’ mostly queuing time

Performance Analysis of MOHA Systems (100,000 Tasks) Initialization Overhead of MOHA Systems (100,000 Tasks)
5000 3

(]

| 15000 ~
- g
3 5 15
‘6 10000 =
*® 1
- I) I I I
. | .
1 3 6 1 3 6 9

of MOHA TaskExecutors # of MOHA TaskExecutors

B MOHA-ActiveMQ W MOHA-Kafka B MOHA-ActiveMQ ® MOHA-Kafka

Slide #25

Table of Contents KiSTi

= Conclusion and Future Work

Slide #26

Conclusion el

= Design and implementation of MOHA (Many-task
computing On HAdoop) framework
* effectively combine MTC technologies with Hadoop
* developed as one of Hadoop YARN applications
* transparently co-host existing MTC applications with other
Big Data processing frameworks in a single Hadoop cluster
= MOHA prototype as a Proof-of-Concept

* can execute shell command based many tasks across
distributed computing resources

* substantially reduce the overall execution time of many-task
processing with minimal amount of resources
v compared to the existing YARN Distributed-Shell

» efficiently dispatch a large number of tasks by exploiting
multi-level scheduling and streamlined task dispatching

Slide #27

[} []

Future Work HOT

= MOHA can bring many interesting research issues

* related to data grouping & declustering on HDFS, scalable
job/metadata management, dynamic load balancing, etc.

* considering applying a new type of high-performance storage
system in HPC area such as Lustre on top of Hadoop

v’ support relatively small data files from MTC applications by replacing
conventional HDFS

 ultimately contributing to a new data processing framework
for MTC applications in Hadoop 2.0 ecosystem

= Based on our years of experience to support “real
scientific applications in MTC area”, we plan to apply
these applications on our new MOHA framework

Slide #28

il
aEIE

by
um ‘

Related Work: HTCaa$S i

= HTCaaS: a Multi-level Scheduling System

 High-Throughput Computing as a Service
v’ Meta-Job based automatic job split & submission
= e.g., parameter sweeps or N-body calculations
v Agent-based multi-level scheduling
v’ Pluggable interface to heterogeneous computing resources
v’ Leveraging local disks of each compute node
v’ Supporting many client interfaces

* HTCaaS is currently running as
a pilot service on top of PLSI

v’ supporting a number of scientific
applications from pharmaceutical
domain and high-energy physics |

HTCaas$ server
automatically produce

Pluggable Resource Interface

Web Service Interface for Clients

Supercomputers
(PLSI)

Slide #30

Related Work: HTCaa$S i

> htcaas “ Monitoring

Manager
@Job Execution

e— | Account Monitoring

Manager «—— | Certificate/Confirm |}

“ gspn: | Job Manaaer ®Job Request &
®MetaJob Zeranctor < Dispatch
Submit Ex_tésion —_ Job Queue

User Data y
Manager /
-

_ Manager
Agent
submission

Slide #31

Related Work: HTCaa$S i

= Falkon MTC Task Dispatcher

* achieve 15,000 tasks/sec dispatching performance

v'loan Raicu et. al, “Middleware support for many-task computing”,
Cluster Computing, Volume 13 Issue 3, September 2010
v One billion tasks (sleep 0) on 128 processors in a Linux cluster
= 19.2 hours to complete

= distributed version of the Falkon dispatcher using four instances on an
8-core server using bundling of 100

SRl SR 22000 — — Completed Tasks T 1.1
L'“:" EEilia 20000 | Thmﬂghput {tasks/sec) - B0 sec aver | 10 E
‘/:/_gfr is,,a:rj‘_ 18000 09 @
= o = ~_| 2
T =) @ 16000 r08 w
- Emt e 2 14000 07 &
2 . i)
_________ o w [u
N = 12000 06 wu
(a0 fra 5 2
PFa_Ek_on L = isWd‘j‘—- =_1DUDU T UE'- %‘
'--_\ Nl B 8000 104 E
7& E 6000 L D3 &
= 4000 t 0.2
2000 0.1
0 £ 0.0

Global Parallel File System (GPFS)

S % x B B O O > 8D P
Time (hours)
_ Figure 9: Endurance test with 1B tasks on 128 CPUs
Figure 4: 3-Tier Architecture Overview in ANL/UC cluster Slide #32

