
MOHA: Many-Task Computing meets
the Big Data Platform

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #2

 Distributed/Parallel computing systems to support
various types of challenging applications

• HTC (High-Throughput Computing) for relatively long
running applications consisting of loosely-coupled tasks

• HPC (High-Performance Computing) targets efficiently
processing tightly-coupled parallel tasks

• DIC (Data-intensive Computing) mainly focuses on
effectively leveraging distributed storage systems and
parallel processing frameworks

Introduction

Slide #3

Introduction

 Many-Task Computing (MTC) as a new computing
paradigm [I. Raicu, I. Foster, Y. Zhao, MTAGS’08]

• A very large number of tasks (millions or even billions)

• Relatively short per task execution times (sec to min)

• Data intensive tasks (i.e., tens of MB of I/O per second)

• A large variance of task execution times (i.e., ranging from
hundreds of milliseconds to hours)

• Communication-intensive, however, not based on message
passing interface but through files

Slide #4

astronomy, physics,
pharmaceuticals,
chemistry, etc.

Introduction

astronomy, physics,
pharmaceuticals,

chemistry, etc.

Many-Task Computing
Applications

A very large # of tasks

Relatively short per task
execution time

Data intensive tasks

A large variance of task
execution times

Communication through files

millions or
even billions

seconds to
minutes

tens of MB
of I/O per

second
from hundreds

of
milliseconds

to hours

High-Performance Task
Dispatching

Dynamic Load Balancing Slide #5

Another Type of Data-intensive
Workload

Introduction

 Hadoop, the de facto standard “Big Data” store and
processing infrastructure
• with the advent of Apache Hadoop YARN, Hadoop 2.0 is

evolving into multi-use data platform
harness various types of data processing workflows

decouple application-level scheduling and resource management

Slide #6

Introduction

 This paper presents

• MOHA (Many-task computing On HAdoop) framework
which can effectively combine Many-Task Computing
technologies with the existing Big Data platform Hadoop
developed as one of Hadoop YARN applications

 transparently cohost existing MTC applications with other Big Data
processing frameworks in a single Hadoop cluster

Slide #7

MTC Multi-level
Scheduling

Hadoop YARN
Resource

Management

Related Work

 GERBIL: MPI+YARN [L. Xu , M. Li, A. R. Butt, CCGrid’15]

• A framework for transparently co-hosting unmodified MPI
applications alongside MapReduce applications
exploits YARN as the model agnostic resource negotiator

provides an easy-to-use interface to the users

allows realization of rich data analytics workflows as well as efficient
data sharing between the MPI and MapReduce models within a
single cluster

Slide #8

Related Work

Slide #9

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #10

Hadoop YARN Execution Model

 YARN separates all of its functionality into two layers
• platform layer is responsible for resource management (first-

level scheduling)
Resource Manager, Node Manager

• framework layer coordinates application execution (second-
level scheduling)
ApplicationMaster New MOHA Framework !

Slide #11

MOHA System Architecture

Slide #12

YARN
Client

YARN
ApplicationMaster

YARN
Container

MOHA System Architecture

 MOHA Client

• submit a MOHA job and performs data staging
A MOHA job is a bag of tasks (i.e., a collection of multiple tasks)

 provides a simple JDL(Job Description Language)

upload required data into the HDFS

 application input data, application executable, MOHA JAR, JDL etc.

• prepare an execution environment for the MOHA Manager
based on YARN’s Resource Localization Mechanism
 required data are automatically downloaded and prepared for use in

the local working directories of containers by the NMs

Slide #13

MOHA System Architecture

 MOHA Manager

• create and launch MOHA job queues

• split a MOHA job into multiple tasks and
insert them into the queue

• get containers allocated and launch MOHA
TaskExecutors

 MOHA TaskExecutor

• pull the tasks from the MOHA job queues
and process them
monitor and report the task execution

Slide #14“Multi-level Scheduling Mechanism”

MOHA Manager

 Start AppMaster

& register

 Resource

capabilities

 Request

Containers

 Assign

Containers

pulling the tasks

MOHA System Architecture

Slide #15

 Apache ActiveMQ
• a message broker in Java that

supports AMQP protocol

• does not support any message
delivery guarantee

• cannot scale very well in larger
systems

 Apache Kafka
• an open source, distributed

publish and consume service
introduced by LinkedIn

• gathers the logs from a large
number of servers, and feeds it
into HDFS or other analysis
clusters

• fully distributed and provides
high throughput

Discussion

 MTC applications typically require
• much larger numbers of tasks

• relatively short task execution times

• substantial amount of data operations with potential
interactions through files

high-performance task dispatching

effective dynamic load balancing

data-intensive workload support

“seamless integration”

 Hadoop can be a viable choice for addressing these
challenging MTC applications
• technologies from MTC community should be effectively

converged into the ecosystem

Slide #16

Discussion

 Potential Research Issues
• Scalable Job/Metadata Management

 removing potential performance bottleneck

• Dynamic Task Load Balancing
Task bundling and Job profiling techniques

Slide #17

Scalable Job &
Metadata Management

Pulling based
streamlined task

dispatching

Dynamic Load
Balancing

Executor

Executor

Executor Executor

Executor

Executor

Discussion

 Potential Research Issues

• Data-aware resource allocation
 leveraging Hadoop’s data locality (computations close to data)

• Data Grouping & Declustering
aggregating a groups of small files (“data bundle”)

Slide #18

tasktask
data

data

data data

data

datadata

data

data

Task Bundling & Data Grouping can be closely
related

1

2 3

4 5

2

3 5

Task

Executor

Task

Executor

Task

Executor

1

4

2

1

2

3

4

5

Locality
Metadata

YARN

MOHA

Manager
(Job &

Metadata

Management)

data

data

data

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #19

Experimental Setup

 MOHA Testbed
• consists of 3 rack mount servers

2 * Intel Xeon E5-2620v3 CPUS (12 CPU cores)

64GB of main memory

2 * 1TB SATA HDD (1 for Linux, 1 for HDFS)

• Software stack
Hortonworks Data Platform (HDP) 2.3.2

 automated install with Apache Ambari

Operating Systems Requirements
 CentOS release 6.7 (Final)

 Identical environment with the Hortonworks Sandbox VM

Slide #20

Experimental Setup

Slide #21

MOHA Testbed Configurations including
Masters (YARN ResourceManager, HDFS

NameNode) and Slaves (YARN
NodeManager, HDFS DataNode) with

additional Hadoop service components

Experimental Setup

 Comparison Models
• YARN Distributed-Shell

a simple YARN application that can execute shell commands (scripts)
on distributed containers in a Hadoop cluster

• MOHA-ActiveMQ
ActiveMQ running on a single node with New I/O (NIO) Transport

• MOHA-Kafka
3 Kafka Brokers with minimum fetch size (64 bytes)

 Workload
• Microbenchmark

varying the # of “sleep 0” tasks

• Performance Metrics
Elapsed time

Task processing rate (# of tasks/sec)

Slide #22

Experimental Results

Slide #23

8.4x

28.5x

 Performance Comparison (Total Elapsed Time)

• multiple resource (de)allocations in YARN Distributed-Shell

• multi-level scheduling mechanisms enable MOHA frameworks to
substantially reduce the cost of executing many tasks

Experimental Results

Slide #24

 Execution Time Breakdowns of MOHA Frameworks

• resource allocation time of a single container can take a
couple of seconds

• Overheads of MOHA-ActiveMQ are larger than MOHA-Kafka
due to higher memory usages in MOHA-ActiveMQ’s TaskExecutor

 relatively heavyweight ActiveMQ consumer libraries

Experimental Results

 Task Dispatching Rate and Initialization Overhead

• MOHA-Kafka outperforms MOHA-ActiveMQ as the number
of TaskExecutors increases (also Falkon’s 15,000 tasks/sec)
have not fully utilized Kafka’s task bundling functionality

• Initialization Overhead
mostly queuing time

Slide #25

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #26

Conclusion

 Design and implementation of MOHA (Many-task
computing On HAdoop) framework
• effectively combine MTC technologies with Hadoop

• developed as one of Hadoop YARN applications

• transparently co-host existing MTC applications with other
Big Data processing frameworks in a single Hadoop cluster

 MOHA prototype as a Proof-of-Concept
• can execute shell command based many tasks across

distributed computing resources

• substantially reduce the overall execution time of many-task
processing with minimal amount of resources
compared to the existing YARN Distributed-Shell

• efficiently dispatch a large number of tasks by exploiting
multi-level scheduling and streamlined task dispatching

Slide #27

Future Work

 MOHA can bring many interesting research issues

• related to data grouping & declustering on HDFS, scalable
job/metadata management, dynamic load balancing, etc.

• considering applying a new type of high-performance storage
system in HPC area such as Lustre on top of Hadoop
support relatively small data files from MTC applications by replacing

conventional HDFS

• ultimately contributing to a new data processing framework
for MTC applications in Hadoop 2.0 ecosystem

 Based on our years of experience to support “real
scientific applications in MTC area”, we plan to apply
these applications on our new MOHA framework

Slide #28

Thank you!
National Institute of

Supercomputing and Networking

2016

Related Work: HTCaaS

Slide #30

 HTCaaS: a Multi-level Scheduling System

• High-Throughput Computing as a Service
Meta-Job based automatic job split & submission

 e.g., parameter sweeps or N-body calculations

Agent-based multi-level scheduling

Pluggable interface to heterogeneous computing resources

Leveraging local disks of each compute node

Supporting many client interfaces

• HTCaaS is currently running as
a pilot service on top of PLSI
supporting a number of scientific

applications from pharmaceutical
domain and high-energy physics

Related Work: HTCaaS

Slide #31

Related Work: HTCaaS

Slide #32

 Falkon MTC Task Dispatcher
• achieve 15,000 tasks/sec dispatching performance

 Ioan Raicu et. al, “Middleware support for many-task computing”,
Cluster Computing, Volume 13 Issue 3, September 2010

One billion tasks (sleep 0) on 128 processors in a Linux cluster
 19.2 hours to complete

 distributed version of the Falkon dispatcher using four instances on an
8-core server using bundling of 100

