
MOHA: Many-Task Computing meets
the Big Data Platform

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #2

 Distributed/Parallel computing systems to support
various types of challenging applications

• HTC (High-Throughput Computing) for relatively long
running applications consisting of loosely-coupled tasks

• HPC (High-Performance Computing) targets efficiently
processing tightly-coupled parallel tasks

• DIC (Data-intensive Computing) mainly focuses on
effectively leveraging distributed storage systems and
parallel processing frameworks

Introduction

Slide #3

Introduction

 Many-Task Computing (MTC) as a new computing
paradigm [I. Raicu, I. Foster, Y. Zhao, MTAGS’08]

• A very large number of tasks (millions or even billions)

• Relatively short per task execution times (sec to min)

• Data intensive tasks (i.e., tens of MB of I/O per second)

• A large variance of task execution times (i.e., ranging from
hundreds of milliseconds to hours)

• Communication-intensive, however, not based on message
passing interface but through files

Slide #4

astronomy, physics,
pharmaceuticals,
chemistry, etc.

Introduction

astronomy, physics,
pharmaceuticals,

chemistry, etc.

Many-Task Computing
Applications

A very large # of tasks

Relatively short per task
execution time

Data intensive tasks

A large variance of task
execution times

Communication through files

millions or
even billions

seconds to
minutes

tens of MB
of I/O per

second
from hundreds

of
milliseconds

to hours

High-Performance Task
Dispatching

Dynamic Load Balancing Slide #5

Another Type of Data-intensive
Workload

Introduction

 Hadoop, the de facto standard “Big Data” store and
processing infrastructure
• with the advent of Apache Hadoop YARN, Hadoop 2.0 is

evolving into multi-use data platform
harness various types of data processing workflows

decouple application-level scheduling and resource management

Slide #6

Introduction

 This paper presents

• MOHA (Many-task computing On HAdoop) framework
which can effectively combine Many-Task Computing
technologies with the existing Big Data platform Hadoop
developed as one of Hadoop YARN applications

 transparently cohost existing MTC applications with other Big Data
processing frameworks in a single Hadoop cluster

Slide #7

MTC Multi-level
Scheduling

Hadoop YARN
Resource

Management

Related Work

 GERBIL: MPI+YARN [L. Xu , M. Li, A. R. Butt, CCGrid’15]

• A framework for transparently co-hosting unmodified MPI
applications alongside MapReduce applications
exploits YARN as the model agnostic resource negotiator

provides an easy-to-use interface to the users

allows realization of rich data analytics workflows as well as efficient
data sharing between the MPI and MapReduce models within a
single cluster

Slide #8

Related Work

Slide #9

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #10

Hadoop YARN Execution Model

 YARN separates all of its functionality into two layers
• platform layer is responsible for resource management (first-

level scheduling)
Resource Manager, Node Manager

• framework layer coordinates application execution (second-
level scheduling)
ApplicationMaster  New MOHA Framework !

Slide #11

MOHA System Architecture

Slide #12

YARN
Client

YARN
ApplicationMaster

YARN
Container

MOHA System Architecture

 MOHA Client

• submit a MOHA job and performs data staging
A MOHA job is a bag of tasks (i.e., a collection of multiple tasks)

 provides a simple JDL(Job Description Language)

upload required data into the HDFS

 application input data, application executable, MOHA JAR, JDL etc.

• prepare an execution environment for the MOHA Manager
based on YARN’s Resource Localization Mechanism
 required data are automatically downloaded and prepared for use in

the local working directories of containers by the NMs

Slide #13

MOHA System Architecture

 MOHA Manager

• create and launch MOHA job queues

• split a MOHA job into multiple tasks and
insert them into the queue

• get containers allocated and launch MOHA
TaskExecutors

 MOHA TaskExecutor

• pull the tasks from the MOHA job queues
and process them
monitor and report the task execution

Slide #14“Multi-level Scheduling Mechanism”

MOHA Manager

 Start AppMaster

& register

 Resource

capabilities

 Request

Containers

 Assign

Containers

pulling the tasks

MOHA System Architecture

Slide #15

 Apache ActiveMQ
• a message broker in Java that

supports AMQP protocol

• does not support any message
delivery guarantee

• cannot scale very well in larger
systems

 Apache Kafka
• an open source, distributed

publish and consume service
introduced by LinkedIn

• gathers the logs from a large
number of servers, and feeds it
into HDFS or other analysis
clusters

• fully distributed and provides
high throughput

Discussion

 MTC applications typically require
• much larger numbers of tasks

• relatively short task execution times

• substantial amount of data operations with potential
interactions through files

high-performance task dispatching

effective dynamic load balancing

data-intensive workload support

“seamless integration”

 Hadoop can be a viable choice for addressing these
challenging MTC applications
• technologies from MTC community should be effectively

converged into the ecosystem

Slide #16

Discussion

 Potential Research Issues
• Scalable Job/Metadata Management

 removing potential performance bottleneck

• Dynamic Task Load Balancing
Task bundling and Job profiling techniques

Slide #17

Scalable Job &
Metadata Management

Pulling based
streamlined task

dispatching

Dynamic Load
Balancing

Executor

Executor

Executor Executor

Executor

Executor

Discussion

 Potential Research Issues

• Data-aware resource allocation
 leveraging Hadoop’s data locality (computations close to data)

• Data Grouping & Declustering
aggregating a groups of small files (“data bundle”)

Slide #18

tasktask
data

data

data data

data

datadata

data

data

Task Bundling & Data Grouping can be closely
related

1

2 3

4 5

2

3 5

Task

Executor

Task

Executor

Task

Executor

1

4

2

1

2

3

4

5

Locality
Metadata

YARN

MOHA

Manager
(Job &

Metadata

Management)

data

data

data

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #19

Experimental Setup

 MOHA Testbed
• consists of 3 rack mount servers

2 * Intel Xeon E5-2620v3 CPUS (12 CPU cores)

64GB of main memory

2 * 1TB SATA HDD (1 for Linux, 1 for HDFS)

• Software stack
Hortonworks Data Platform (HDP) 2.3.2

 automated install with Apache Ambari

Operating Systems Requirements
 CentOS release 6.7 (Final)

 Identical environment with the Hortonworks Sandbox VM

Slide #20

Experimental Setup

Slide #21

MOHA Testbed Configurations including
Masters (YARN ResourceManager, HDFS

NameNode) and Slaves (YARN
NodeManager, HDFS DataNode) with

additional Hadoop service components

Experimental Setup

 Comparison Models
• YARN Distributed-Shell

a simple YARN application that can execute shell commands (scripts)
on distributed containers in a Hadoop cluster

• MOHA-ActiveMQ
ActiveMQ running on a single node with New I/O (NIO) Transport

• MOHA-Kafka
3 Kafka Brokers with minimum fetch size (64 bytes)

 Workload
• Microbenchmark

varying the # of “sleep 0” tasks

• Performance Metrics
Elapsed time

Task processing rate (# of tasks/sec)

Slide #22

Experimental Results

Slide #23

8.4x

28.5x

 Performance Comparison (Total Elapsed Time)

• multiple resource (de)allocations in YARN Distributed-Shell

• multi-level scheduling mechanisms enable MOHA frameworks to
substantially reduce the cost of executing many tasks

Experimental Results

Slide #24

 Execution Time Breakdowns of MOHA Frameworks

• resource allocation time of a single container can take a
couple of seconds

• Overheads of MOHA-ActiveMQ are larger than MOHA-Kafka
due to higher memory usages in MOHA-ActiveMQ’s TaskExecutor

 relatively heavyweight ActiveMQ consumer libraries

Experimental Results

 Task Dispatching Rate and Initialization Overhead

• MOHA-Kafka outperforms MOHA-ActiveMQ as the number
of TaskExecutors increases (also Falkon’s 15,000 tasks/sec)
have not fully utilized Kafka’s task bundling functionality

• Initialization Overhead
mostly queuing time

Slide #25

Table of Contents

 Introduction

 Design and Implementation of MOHA

 Evaluation

 Conclusion and Future Work

Slide #26

Conclusion

 Design and implementation of MOHA (Many-task
computing On HAdoop) framework
• effectively combine MTC technologies with Hadoop

• developed as one of Hadoop YARN applications

• transparently co-host existing MTC applications with other
Big Data processing frameworks in a single Hadoop cluster

 MOHA prototype as a Proof-of-Concept
• can execute shell command based many tasks across

distributed computing resources

• substantially reduce the overall execution time of many-task
processing with minimal amount of resources
compared to the existing YARN Distributed-Shell

• efficiently dispatch a large number of tasks by exploiting
multi-level scheduling and streamlined task dispatching

Slide #27

Future Work

 MOHA can bring many interesting research issues

• related to data grouping & declustering on HDFS, scalable
job/metadata management, dynamic load balancing, etc.

• considering applying a new type of high-performance storage
system in HPC area such as Lustre on top of Hadoop
support relatively small data files from MTC applications by replacing

conventional HDFS

• ultimately contributing to a new data processing framework
for MTC applications in Hadoop 2.0 ecosystem

 Based on our years of experience to support “real
scientific applications in MTC area”, we plan to apply
these applications on our new MOHA framework

Slide #28

Thank you!
National Institute of

Supercomputing and Networking

2016

Related Work: HTCaaS

Slide #30

 HTCaaS: a Multi-level Scheduling System

• High-Throughput Computing as a Service
Meta-Job based automatic job split & submission

 e.g., parameter sweeps or N-body calculations

Agent-based multi-level scheduling

Pluggable interface to heterogeneous computing resources

Leveraging local disks of each compute node

Supporting many client interfaces

• HTCaaS is currently running as
a pilot service on top of PLSI
supporting a number of scientific

applications from pharmaceutical
domain and high-energy physics

Related Work: HTCaaS

Slide #31

Related Work: HTCaaS

Slide #32

 Falkon MTC Task Dispatcher
• achieve 15,000 tasks/sec dispatching performance

 Ioan Raicu et. al, “Middleware support for many-task computing”,
Cluster Computing, Volume 13 Issue 3, September 2010

One billion tasks (sleep 0) on 128 processors in a Linux cluster
 19.2 hours to complete

 distributed version of the Falkon dispatcher using four instances on an
8-core server using bundling of 100

