
Leveraging Burst Buffer Coordination to
Prevent I/O Interference

Anthony Kougkas1,2 , Matthieu Dorier2 , Rob Latham2 , Rob Ross2 , and Xian-He Sun1

1Illinois Institute of Technology, 2Argonne National Laboratory

Anthony Kougkas
Illinois Institute of Technology
Email: akougkas@hawk.iit.edu
Website: https://goo.gl/LkBz4N

Phone: 312-493-9389
Social media: https://www.linkedin.com/in/anthonykougkas

Contact

Concurrent accesses to the shared storage resources in 
current HPC machines lead to severe performance 
degradation caused by I/O contention. We identify the 
key challenges to efficiently handling interleaved data 
accesses, and we propose a system-wide solution to 
optimize global performance.
We implemented and tested several I/O scheduling 
policies, including prioritizing specific applications by 
leveraging burst buffers to defer the conflicting 
accesses from another application and/or directing the 
requests to different storage servers inside the parallel 
file system infrastructure. We mitigate the negative 
effects of interference and optimize the performance up 
to 2x depending on the selected I/O policy.

Abstract
Coordinate data accesses to prevent applications to reach 
the underlying storage resources at the same time by 
imposing certain I/O policies implemented by the burst 
buffer layer.

Strategy 1

Strategy 2

Strategy 3

I/O Interference

 Burst buffers are an 
intermediate storage tier 
located between compute 
nodes and the underlying 
storage system.

 Main goal: to quickly absorb I/O 
requests from the computing 
elements and asynchronously 
issue them to the PFS, allowing 
the processing cores to return 
faster to computation.

Utilize Burst Buffers as 
I/O traffic controllers

Burst Buffers

Results

● We developed BBIO library which helps impose the 
proposed I/O policies to mitigate the performance 
degradation.

● Experimental results showed that we can achieve higher 
performance up to 2x depending on the selected policy.

Conclusions

The phenomenon where multiple applications run 
concurrently and share the underlying storage system 
leading to severe degradation of the I/O bandwidth that 
each application experiences. 
Major sources:
1) Network contention at the level of each storage 

server.
2) Poor scheduling decisions within the storage service.
3) Additional disk-head movements when interleaved 

requests from distinct applications reach the same 
storage device

Approach

Without partitioning With partitioning

Implementation
 Basic Buffered I/O (BBIO): a user-space buffering system 

under POSIX

PFS

Application

POSIX
WRAPPER

Real POSIX

lib_buffer.so

PFS

fwrite()

Should
Buffer?

YESNO

real fwrite()

PFS

real fwrite()

threshold

flush_buffer()

Buffer

Default – No policies

Policy 1

Policy 2

Policy 3

Real Applications – LANL_App 1


	Slide 1

