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HPC machines run multiple applications 
concurrently!

● Capability vs Capacity supercomputers

● Case Study (Argonne Intrepid):
– Half of the jobs run on less than 2048 cores(1.25% of the full system). 

– Also half the system time was used by jobs smaller than 2048 cores.

Figure source: Calciom:Mitigating I/O Interference in HPC Systems through Cross-Application Coordination, M.Dorier et al., IPDPS 14



10/26/16 Introduction and Background 4

What is I/O interference?

Serializing of requests
(usually FCFS order)

I/O performance degradation due to 
applications' INTERFERENCE

● Network contention at the level of each 
storage server. 

● Poor scheduling decisions within the 
storage service leading to different 
servers servicing requests from distinct 
applications in a different order. 

● Additional disk-head movements when 
interleaved requests reach the same 
storage device. 
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Cross-application I/O interference effects

● Significant performance degradation (as low as 50%)

● Lower global I/O efficiency

● Applications experience higher I/O latency

There is a better way! 
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What is a burst buffer?

● Burst buffers are an intermediate 
storage tier located between 
compute nodes and the underlying 
storage system.

● Main goal: to quickly absorb I/O 
requests from the computing 
elements and asynchronously issue 
them to the PFS, allowing the 
processing cores to return faster to 
computation.

Perfect candidates for 
I/O traffic controllers! 



10/26/16  7

Outline

● Introduction and Background

● Methodology  

● Design and Implementation

● Experimental Results

● Conclusions



10/26/16 Methodology 8

Our approach

● Coordinate data accesses to prevent applications to reach 
the underlying storage resources at the same time. 

● Control I/O accesses by imposing certain I/O policies 
implemented by the burst buffer layer.

● Solution should be non-invasive to the applications.

● Three new strategies to prevent I/O interference. 

● By solving I/O interference, our solution promises:

– higher global I/O efficiency

– better performance  
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Strategy 1

● App A gets interrupted by another App B and stages the I/O.
● Two variants:

App A blocks if necessary 
and flushes only when App 

B has completed its I/O 
operations.

App A flushes its buffer when 
it has no more available work 

even if App B has not 
completed its I/O operations.
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Strategy 2

● App A never gets interrupted. App B upon arrival stages its I/O.
● Two variants:

App B blocks if necessary 
and flushes only when App 

A has completed its I/O 
operations.

App B flushes its buffer when 
it has no more available work 

even if App A has not 
completed its I/O operations.

It is a question of 
which application 
enjoys exclusive 
access to the storage 
resources! 
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Strategy 3

● Partition the parallel file system’s servers into distinct 
subsets.

● Two modes: static and dynamic partitioning.

Without partitioning With partitioning



10/26/16  12

Outline

● Introduction and Background

● Methodology  

● Design and Implementation

● Experimental Results

● Conclusions



10/26/16 Design and Implementation 13
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Design: High-level architecture

Key components:
Gatekeepers  →
Collect info about 
I/O patterns and 
represent the app
Tracker  →
Collects info from 
all GK and 
imposes the 
policies
Selective 
buffering  sets →
on or off the data 
staging
PFS module  →
dynamically 
partitions PFS 
servers
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Implementation overview

● Basic Buffered I/O (BBIO): a user-space buffering system 
under POSIX and LibC interfaces.

● BBIO library can be linked to any code statically or 
dynamically if preloaded.

● POSIX and MPI function wrappers redirecting I/O traffic.

● Simple API:

– BBIO_Init(), BBIO_Finalize()

– BBIO_Enable(), BBIO_Disable()

– BBIO_Flush(), BBIO_On_flush()

● Find it in https://bitbucket.org/mdorier/bbio
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Implementation overview

PFS

Application

POSIX
WRAPPER

Real POSIX

lib_buffer.so

PFS
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real fwrite()
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flush_buffer()
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Experimental setup

Hardware:

● 65-node Linux cluster

● 8-cores and 8GB of RAM

● HDD + SSD on PCIe

● InfiniBand + 1Gb Ethernet

● Exclusive access (1 user)

Software:

● Ubuntu Server 12.04

● OrangeFS 2.9.2

● Gcc 4.8 and MPICH 3.1.4

● Our own micro-benchmark

● CM1 and LANL_App1&2

MPI_COMM_WORLD

App-A communicator App-B communicator
buffers buffers
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● Example of the benchmark for Policy 1:

Application A Application B

Delay between applications
0 – 50 sec (interval 5sec)

write

write

write

write

write

write

write

write

write

Request size
1,4,8 MB 

Delay in msec
0,250,500,750

• 256 MPI ranks
• 32 MB per rank
• 8 pvfs2 servers
• 128MB buf/node
• 10x repetitions

write

write

Interference 
definition:

Design of our micro-benchmark
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Δ-graphs: App A&B with no policy (default)

Application A

Application B
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● Policy 1: Application A 
is running and gets 
interrupted by 
Application B

App A

App B

● Policy 2: Application A 
is running and never 
gets interrupted 

● Policy 3: Application A is 
running but allowed to 
access only specific parts 
of the Parallel File 
System

App A

App B

App A

App B

PFS PFS PFS

Data 
Staging

Data 
Staging

Policies (quick recap)
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Δ-graphs: App A&B with policy 1 

1a:Stage and block 1b:Stage and flush

Application A

Application B
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Δ-graphs: App A&B with policy 2 

2a:Stage and block 2b:Stage and flush

Application A

Application B
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App A&B with policy 3 
3a:Static partitioning 3b:Dynamic partitioning

Application A

Application B
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Δ-graphs: Real applications 

LANL_App1 interfering 
with LANL_App2 and 
CM1

CM1 interfering with 
LANL_App1 and 
LANL_App2
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Scaling study (more than 2 apps)
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Conclusions

● We demonstrated the negative effects of I/O interference 
when multiple applications are concurrently executing in an 
HPC environment.

● We proposed three I/O Policies to mitigate the performance 
degradation.

● We developed BBIO library which helps impose the 
proposed I/O policies.

● Experimental results showed that we can achieve higher 
performance up to 2x depending on the selected policy.
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