
Leveraging Burst Buffer Coordination to
Prevent I/O Interference

Anthony Kougkas
akougkas@hawk.iit.edu

Matthieu Dorier, Rob Latham, Rob Ross, Xian-He Sun

Wednesday, October 26th

Baltimore, USA

mailto:akougkas@hawk.iit.edu

10/26/16 2

Outline

● Introduction and Background

● Methodology

● Design and Implementation

● Experimental Results

● Conclusions

10/26/16 Introduction and Background 3

HPC machines run multiple applications
concurrently!

● Capability vs Capacity supercomputers

● Case Study (Argonne Intrepid):
– Half of the jobs run on less than 2048 cores(1.25% of the full system).

– Also half the system time was used by jobs smaller than 2048 cores.

Figure source: Calciom:Mitigating I/O Interference in HPC Systems through Cross-Application Coordination, M.Dorier et al., IPDPS 14

10/26/16 Introduction and Background 4

What is I/O interference?

Serializing of requests
(usually FCFS order)

I/O performance degradation due to
applications' INTERFERENCE

● Network contention at the level of each
storage server.

● Poor scheduling decisions within the
storage service leading to different
servers servicing requests from distinct
applications in a different order.

● Additional disk-head movements when
interleaved requests reach the same
storage device.

10/26/16 Introduction and Background 5

Cross-application I/O interference effects

● Significant performance degradation (as low as 50%)

● Lower global I/O efficiency

● Applications experience higher I/O latency

There is a better way!

10/26/16 Introduction and Background 6

What is a burst buffer?

● Burst buffers are an intermediate
storage tier located between
compute nodes and the underlying
storage system.

● Main goal: to quickly absorb I/O
requests from the computing
elements and asynchronously issue
them to the PFS, allowing the
processing cores to return faster to
computation.

Perfect candidates for
I/O traffic controllers!

10/26/16 7

Outline

● Introduction and Background

● Methodology

● Design and Implementation

● Experimental Results

● Conclusions

10/26/16 Methodology 8

Our approach

● Coordinate data accesses to prevent applications to reach
the underlying storage resources at the same time.

● Control I/O accesses by imposing certain I/O policies
implemented by the burst buffer layer.

● Solution should be non-invasive to the applications.

● Three new strategies to prevent I/O interference.

● By solving I/O interference, our solution promises:

– higher global I/O efficiency

– better performance

10/26/16 Methodology 9

Strategy 1

● App A gets interrupted by another App B and stages the I/O.
● Two variants:

App A blocks if necessary
and flushes only when App

B has completed its I/O
operations.

App A flushes its buffer when
it has no more available work

even if App B has not
completed its I/O operations.

10/26/16 Methodology 10

Strategy 2

● App A never gets interrupted. App B upon arrival stages its I/O.
● Two variants:

App B blocks if necessary
and flushes only when App

A has completed its I/O
operations.

App B flushes its buffer when
it has no more available work

even if App A has not
completed its I/O operations.

It is a question of
which application
enjoys exclusive
access to the storage
resources!

10/26/16 Methodology 11

Strategy 3

● Partition the parallel file system’s servers into distinct
subsets.

● Two modes: static and dynamic partitioning.

Without partitioning With partitioning

10/26/16 12

Outline

● Introduction and Background

● Methodology

● Design and Implementation

● Experimental Results

● Conclusions

10/26/16 Design and Implementation 13

Parallel File System

 GK

App A

 GK

App B

 GK

App N

….
M
PI

M
PI

M
PI

TC
P

I/O path

Tracker

Design: High-level architecture

Key components:
Gatekeepers →
Collect info about
I/O patterns and
represent the app
Tracker →
Collects info from
all GK and
imposes the
policies
Selective
buffering sets →
on or off the data
staging
PFS module →
dynamically
partitions PFS
servers

10/26/16 Design and Implementation 14

Implementation overview

● Basic Buffered I/O (BBIO): a user-space buffering system
under POSIX and LibC interfaces.

● BBIO library can be linked to any code statically or
dynamically if preloaded.

● POSIX and MPI function wrappers redirecting I/O traffic.

● Simple API:

– BBIO_Init(), BBIO_Finalize()

– BBIO_Enable(), BBIO_Disable()

– BBIO_Flush(), BBIO_On_flush()

● Find it in https://bitbucket.org/mdorier/bbio

10/26/16 Design and Implementation 15

Implementation overview

PFS

Application

POSIX
WRAPPER

Real POSIX

lib_buffer.so

PFS

fwrite()

Should
Buffer?

YESNO

real fwrite()

PFS

real fwrite()

threshold

flush_buffer()

Buffer

10/26/16 16

Outline

● Introduction and Background

● Methodology

● Design and Implementation

● Experimental Results

● Conclusions

10/26/16 Experimental Results 17

Experimental setup

Hardware:

● 65-node Linux cluster

● 8-cores and 8GB of RAM

● HDD + SSD on PCIe

● InfiniBand + 1Gb Ethernet

● Exclusive access (1 user)

Software:

● Ubuntu Server 12.04

● OrangeFS 2.9.2

● Gcc 4.8 and MPICH 3.1.4

● Our own micro-benchmark

● CM1 and LANL_App1&2

MPI_COMM_WORLD

App-A communicator App-B communicator
buffers buffers

10/26/16 Experimental Results 18

● Example of the benchmark for Policy 1:

Application A Application B

Delay between applications
0 – 50 sec (interval 5sec)

write

write

write

write

write

write

write

write

write

Request size
1,4,8 MB

Delay in msec
0,250,500,750

• 256 MPI ranks
• 32 MB per rank
• 8 pvfs2 servers
• 128MB buf/node
• 10x repetitions

write

write

Interference
definition:

Design of our micro-benchmark

10/26/16 Experimental Results 19

Δ-graphs: App A&B with no policy (default)

Application A

Application B

10/26/16 Experimental Results 20

● Policy 1: Application A
is running and gets
interrupted by
Application B

App A

App B

● Policy 2: Application A
is running and never
gets interrupted

● Policy 3: Application A is
running but allowed to
access only specific parts
of the Parallel File
System

App A

App B

App A

App B

PFS PFS PFS

Data
Staging

Data
Staging

Policies (quick recap)

10/26/16 Experimental Results 21

Δ-graphs: App A&B with policy 1

1a:Stage and block 1b:Stage and flush

Application A

Application B

10/26/16 Experimental Results 22

Δ-graphs: App A&B with policy 2

2a:Stage and block 2b:Stage and flush

Application A

Application B

10/26/16 Experimental Results 23

App A&B with policy 3
3a:Static partitioning 3b:Dynamic partitioning

Application A

Application B

10/26/16 Experimental Results 24

Δ-graphs: Real applications

LANL_App1 interfering
with LANL_App2 and
CM1

CM1 interfering with
LANL_App1 and
LANL_App2

10/26/16 Experimental Results 25

Scaling study (more than 2 apps)

10/26/16 26

Outline

● Introduction and Background

● Methodology

● Design and Implementation

● Experimental Results

● Conclusions

10/26/16 Conclusions 27

Conclusions

● We demonstrated the negative effects of I/O interference
when multiple applications are concurrently executing in an
HPC environment.

● We proposed three I/O Policies to mitigate the performance
degradation.

● We developed BBIO library which helps impose the
proposed I/O policies.

● Experimental results showed that we can achieve higher
performance up to 2x depending on the selected policy.

Q & A

Leveraging Burst Buffer Coordination to
Prevent I/O Interference

Anthony Kougkas

akougkas@hawk.iit.edu

mailto:akougkas@hawk.iit.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

