

Semantic Accountable Matchmaking for E-Science Resource Sharing

Zeqian Meng Rizos Sakellariou

School of Computer Science, The University of Manchester

John Brooke

JMB Associates Ltd. Manchester

resource sharing management for e-Scientists' collaboration

e-Scientists

[1]: Amsaghrou, Rachida. Report On The Open Market Consultation And The Results. Geneva: CERN, 2016. Web. 29 June 2016.

resource requesting organisation

resource supplying organisation

[2]

[2]: Solagna, Peter. "AAI In EGI Current Status". 2015. Presentation.

dynamic & customised resource supply

fine-grained accountable resource sharing (per job)

coarse-grained resource management

Classification of Virtual Organizations [3]

[3]: Benedyczak, K. and Bała, P., 2012. The next generation of Virtual Organisations in UNICORE. *Unicore Summit.*

Introduction | Main question

How to realise fine-grained accountable resource sharing?

Contributions

- A standard-based information model for fine-grained resource management
- An implementation of the information model (independent organizations, new lifecycle)

Methodology

- Extension upon GLUE 2.0 (Glue Laboratory Uniform Environment 2.0)
- Semantic modeling & reasoning
- Implementation upon Amazon Web Sevices

Results | Semantic model

OWL 2 (Web Ontology Language 2)

Results | Semantic reasoning

Pellet: open source, Java-based

Results | Implementation

Implementation design

Results | Evaluation

- Functionalities:
- -- application- & resource-oriented matchmaking
- -- balance updates
- -- no resources returned with un-sufficient balance
- -- members' privileges for matchmaking

Results | Evaluation

- Performance: pure reasoning duration
 - -- a group with 15 members
 - -- 2 instances for application-oriented matchmaking
 - -- 4 instances for resource-oriented matchmaking

Results | Evaluation

- Performance: pure reasoning duration
- -- application- & resource-oriented matchmaking (S1&S2)
- -- balance updates (S1)
- -- no resources returned with un-sufficient balance (S3)
- -- members' privileges for matchmaking (S5)

Scenario	1	2	3	5
Mean (ms)	267.10	279.33	272.93	280.83
Deveation (ms)	74.45	74.37	72.54	59.11

Conclusion

- A semantic model extended from GLUE 2.0
- Reasoning programs upon the model
- Evaluation over Amazon Web Sevices
- Testbed: negotiable and accountable resource sharing

Hypotheses

- To form and dissolve resource supply in a dynamic & independent manner
- Fine-grained accountable resource sharing
- To allow analysis of algorithms for performance

References

[1] Amsaghrou, Rachida. Report On The Open Market Consultation And The Results. Geneva: CERN, 2016. Web. 29 June 2016.

[2] Solagna, Peter. "AAI In EGI Current Status". 2015. Presentation.

[3] Benedyczak, K. and Bała, P., 2012. The next generation of Virtual Organisations in UNICORE. *Unicore Summit*.

Contact: Zeqian Meng zeqian.meng@manchester.ac.uk