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In this paper

* A new framework for repeatability and reproducibility of
scientific workflow

* Integrating logical and physical preservation
approaches

« Offering Workflow/tasks repositories with version
control

« Supporting automatic deployment and image capture of
rkflows and tasks
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Workflows & Reproducibility
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Challenges

for workflow reproducibility

* Insufficiently detailed workflow description

* Insufficient description of the execution
environment

 Unavallable execution environments

* Absence of & changes Iin the external
dependencies

|- Missing input data



Common reproduciblility approaches

Logical preservation

Physical preservation




Using TOSCA as a logical preservation
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Using Docker for physical preservation
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Reproducibility Framework
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Multi-container deployment
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Time line of workflow devOps
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Workflow repository

0 70 commits

Branch: master = MNew pull request

H rawaqasha getting task |D

e Core-LifecydeScripts @ fda31d3
B Input-sample/Cata

i scripts

[E] .gitmodules

[E] Picard-1containeryami

[§] Picard-deploy.sh

[E] Picard.yam

=] READMEmd

=] inputyam

E] picard.png

=] picard.)pg

Outputs:

output-folder '~/blueprint-name’
output-file(s): {index-BAl-files, cutput-SAM_BAM-files)
description:

t':II'P'ES: {I I.. 1 I}
Execution-Environment:

Cloudify-version: 3.2
Docker-version: 1.8+
O5-type: ubuntu14.04
Disk-space: 10 GB
RAM: 2 GB

Deployment Instruction

This repository includes all files and scripts to deploy Picard workflow on Multiple Docker containers as follow:

1- Clone the repository to your machine, open a terminal window and change to workflow repositony.

2- To execute the workflow with multi containers and the attached input sarnple, in the terminal run:

. . Picard-deploy.sh 1

3- If you have own input files, copy your files Dir to Picard/Input-sample folder, open Inputyaml file and change input Dir
name, then

run: . /Picard-deploy.sh 1

4- To execute the workflow with single container, follow either step 2 or 3 but run:
. . Picard-deploy 2
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Experiments and Results
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1- Repeatability of a workflow on different

clouds
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2- Automatic image capture for improved
performance
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3- Reproducibility in the face of development
changes

Picard workflow
master branch

tagged: v1 zip block

Picard workflow
zipped branch




Conclusions

* Full workflow reproducibility is a long-standing issue
« TOSCA description is used for logical preservation

« Docker images for tasks/workflows support physical
preservation

« Changes tracking and automatic deployment also contribute to
a comprehensive solution of the problem

 Integration of these techniques addresses majority of the
Issues related to workflow decay

D :



THANK YOU

D



