A Framework for Scientific Workflow
Reproducibility in the Cloud

Rawaa Qasha, Jacek Cata, Paul Watson

Newcastle University, Newcastle upon Tyne, UK
Email: {r.qasha, jacek.cala, paul.watson}@newcastle.ac.uk

Newcastle
+ University

In this paper

* A new framework for repeatability and reproducibility of
scientific workflow

* Integrating logical and physical preservation
approaches

« Offering Workflow/tasks repositories with version
control

« Supporting automatic deployment and image capture of
rkflows and tasks

2

Outline

« Background

« Challenges for workflow reproducibility

« Our solution for logical and physical preservations
* Overview of reproducibility framework

« Experiments and results

e Conclusions

D 3

Workflows & Reproducibility

m total no. of workflows
m \Workflows can be re-excuted

1600
(éJ 1400
O 1200
(—
<<
g 1000
o 800
@)
— 600
P

400
=
Z 200

a8 0%
0 - w

studyl1* study2**

ing and combating decay in Taverna workflows,” 2012
utability of Publicly Shared Scientific Workflows”, 2015

Challenges

for workflow reproducibility

* Insufficiently detailed workflow description

* Insufficient description of the execution
environment

 Unavallable execution environments

* Absence of & changes Iin the external
dependencies

|- Missing input data

Common reproduciblility approaches

Logical preservation

Physical preservation

Using TOSCA as a logical preservation

>

|
I|L _______
|

Type fipe

Service Template

Node
Template
(T1)

- =

Node Node
Template Template
(T2) (T3)

Node
Template
(T4)

nvironment description

Using Docker for physical preservation

-
Topls & l l Task ——
Libs. Q artifact
"! Data

1
I
\ |
base Contalner Container Image Task O
Image creation —Wlth Depen —ﬁrﬁ |mage :> :> :>x

(a) Initial task deployment & execution

Task Container,
image creation

(b) Task deployment & execution with task image

ironment and dependencies, tracking changes

Reproducibility Framework

Task/WF ~ Core Repository (GitHub) mages
Reposnory LifeCycle _ Repository
(GitHub) Scripts Basic Types (Docker Hub)
- \ / / T
Workflow Deployment & Enactment Engine Aultrcr)]r;laéed
(TOSCA Runtime Environment: Cloudify) Creagon

: -

Target Execution Environment
(Docker over local VM, AWS, Azure, GCE, ...)

Multi-container deployment

44— Task-Link
S Contained-in
4+———— Depends-on

= 3 Picard
m Pick File (¢— T —

‘-L ExportFiles

ExportFiles

e R S A - A L - A S IR o om0 o e o Eppe e ! sy
AR
Container Container Container Container Container Container Container Container
VIV
Image Container Dependency Task Image Task Container
pull Creation Installation download creation execution destroy

10

i
i

Container
destroy

— ExportFiles

Image
creation

Index
1
I
!
\-A:;/
=y
I
I
|
|
|
I
|
I
l
N7

:
3 - H

Task
execution

|

)

VM

Container

Task
download

H

Dependency
Installation

Pick File ¢

)
-
D
&
>

O
o
D

©
| -
()]

=
q8]
i
-
@)
&)

Q
(@)

=

p)

- Contained-in
+—— Depends-on
ImportDir
I
I
|
Container
Creation

g Task-Link
i

Image
pull

Time line of workflow devOps

Deploying WF and
Develop WF tasks, automatic
Node/Relationship Implementing Building WF producing Docker Creating WF
Types Lifecycle Scripts Blueprints images repository
in ¢ ' ' ' '
Bevsloner : ' ' ' : | WF Available Time

' '
(4 ¢ '
Q P
‘ : :
Researcher Clone specific WF Reproduce the
/User repository cloned WF

12

Workflow repository

0 70 commits

Branch: master = MNew pull request

H rawaqasha getting task |D

e Core-LifecydeScripts @ fda31d3
B Input-sample/Cata

i scripts

[E] .gitmodules

[E] Picard-1containeryami

[§] Picard-deploy.sh

[E] Picard.yam

=] READMEmd

=] inputyam

E] picard.png

=] picard.)pg

Outputs:

output-folder '~/blueprint-name’
output-file(s): {index-BAl-files, cutput-SAM_BAM-files)
description:

t':II'P'ES: {I I.. 1 I}
Execution-Environment:

Cloudify-version: 3.2
Docker-version: 1.8+
O5-type: ubuntu14.04
Disk-space: 10 GB
RAM: 2 GB

Deployment Instruction

This repository includes all files and scripts to deploy Picard workflow on Multiple Docker containers as follow:

1- Clone the repository to your machine, open a terminal window and change to workflow repositony.

2- To execute the workflow with multi containers and the attached input sarnple, in the terminal run:

. . Picard-deploy.sh 1

3- If you have own input files, copy your files Dir to Picard/Input-sample folder, open Inputyaml file and change input Dir
name, then

run: . /Picard-deploy.sh 1

4- To execute the workflow with single container, follow either step 2 or 3 but run:
. . Picard-deploy 2

: : 13
t data, tracking changes and deployment instructions

Experiments and Results

D “

1- Repeatability of a workflow on different

clouds
2.5
Single-container
— 2
.g B Multiple-containers
)
E 1.5
—
[=
Q2 1 4
e
-
(S
%
o } r I> t
0 -

Dev Env. Amazon Azure Google Local VM

15

2- Automatic image capture for improved
performance

22 0 | o]

n o n o mn o wun o
N o &N N o

3- Reproducibility in the face of development
changes

Picard workflow
master branch

tagged: v1 zip block

Picard workflow
zipped branch

Conclusions

* Full workflow reproducibility is a long-standing issue
« TOSCA description is used for logical preservation

« Docker images for tasks/workflows support physical
preservation

« Changes tracking and automatic deployment also contribute to
a comprehensive solution of the problem

 Integration of these techniques addresses majority of the
Issues related to workflow decay

D :

THANK YOU

D

