Converting Scripts into Reproducible Workflow Research Objects

Lucas A. M. C. Carvalho, Khalid Belhajjame, Claudia Bauzer Medeiros

lucas.carvalho@ic.unicamp.br

Baltimore, Maryland, USA

October 23-26, 2016

- Data-Intensive Experiments
 - Collection of scripts, programs and (big) data

- Data-Intensive Experiments
 - Collection of scripts, programs and (big) data

- Data-Intensive Experiments
 - Collection of scripts, programs and (big) data

Manual collection and organization of data provenance

Script-based experiments

Split input pdb into segments

grep -v HOH pccel45a.pdb > protein.pdb
grep HOH pccel45a.pdb > water.pdb

psfgen << ENDMOL

Read topology file
topology ../toppar/top_all22_prot.rtf

Build protein segment

pdbalias atom ILE CD1 CD segment GH45 { pdb protein.pdb

patch GLUP GH45:124 patch GLUP GH45:146 patch GLUP GH45:169 patch ASPP GH45:121 patch DISU GH45:165 GH45:179 patch DISU GH45:61 GH45:33 patch DISU GH45:28 GH45:123 patch DISU GH45:149 GH45:64 patch DISU GH45:103 GH45:94 regenerate angles dihedrals coordpdb protein.pdb GH45

Build structural waters segment

pdbalias residue HOH TIP3 pdbalias atom HOH 0 OH2 segment H2O { auto none pdb water.pdb} coordpdb water.pdb H2O

Guess missing coordinates
guesscoord

Write structure and coordinate files

What are the inputs and outputs?

How to change this local program for a similar web service?

Difficult to understand, to reuse, and to reproduce.

Example of script code.

Scientific Workflows

Example of Scientific Workflow Management System.

Overview

Overview

Overview

Related Work

- Script-language specific.
- Workflow-engine specific.
- A new language is needed.
- Outcome is **not** an executable workflow.
- Do not collect provenance data of the conversion process.

Two Kind of Experts

Scientists

- Domain experts who understand the experiment, and the script (sometimes called *user*);
- Curators:
 - Scientists who are also familiar with workflow and script programming or;
 - Computer scientists who are familiar enough with the domain to be able to implement our methodology;
 - Responsible for authoring, documenting and publishing workflows and associated resources.

- Produce workflow-like view of the script.
- 2 Create an executable workflow and compare execution of workflow and script.
- 3 Modify the workflow resources.
- 4 Record provenance data.
- 5 Aggregate all resources to support Reproducibility and Reuse.

Produce workflow-like view of the script.

Script-based experiment.

2 Create executable workflow and compare execution of workflow and script.

Executable workflow.

Script-based experiment.

Modify the workflow resources.

5 Aggregate all resources to support Reproducibility and Reuse.

Methodology

Workflow Research Object (WRO)

- Research Objects are semantically rich aggregations of resources that bring together data, methods and people in scientific investigations.
- WROs encapsulate scientific workflows and additional information regarding their context and resources.

Research Object Model

Running Example

- Molecular Dynamics Simulations
 - Many branches of material sciences, computational engineering, physics and chemistry.
 - Scripts (shell script), programs (NAMD, VMD, Fortran)
 - Phases: set up, simulation and analysis of trajectories.
 - Inputs: protein structure, simulation parameters and force field files.
 - **Output**: trajectories and analysis results.

- 20 structure = \$directory_path"/structure.pdb"
- 21 protein = \$directory_path"/protein.pdb"
- 22 water = \$directory_path"/water.pdb"
- 23 bglc = \$directory path"/bglc.pdb"
- 24 egrep -v '(TIP3|BGLC)' \$structure > \$protein
- 25 grep TIP3 \$structure > \$water
- 26 grep BGLC \$structure > \$bglc

Script code.

Step 1 Generate Abstract Workflow

@END split

Annotated script code.

Step 1 Generate Abstract Workflow

Generate Abstract Workflow

Step Generate Abstract Workflow

Executable workflow.

29

Script code.

Modify resources:

- Algorithms
- Data Sets
- Parallelization
- Web Services
- ...

New workflow version.

Steps 2 3

Record provenance data: execution traces.

Steps 2 3

Record provenance data: conversion process.

- Annotations describing the workflow.
- Use provenance data
 - To check the quality of the conversion process.
- Run checks to verify the soundness of the workflow.

Executable workflow.

- Common mistakes during the conversion:
 - not clearly identified the main logical processing units in the script;
 - a mistake when migrating script code into the corresponding activity;
 - not provided the correct input files and parameters;
 - the coding of the workflow itself contained errors.

Step 5 Bundle Resources into a Research Object

Contributions

- A methodology that guides curators in a principled manner to transform scripts into reproducible and reusable WRO;
- This addresses an important issue in the area of script provenance;

Conclusions

- We addressed issues wrt understanding, reuse and reproducibility of script-based experiments.
- The methodology created was:
 - elaborated based on requirements;
 - showcased via a real world use case from the field of Molecular Dynamics;
- We exploited tools and standards from the scientific community:
 - Scientific Workflows, YesWorkflow, Research Objects, the W3C
 PROV recommendations and the Web Annotation Data Model.
- The bundle is available at http://w3id.org/w2share/s2rwro/

Next Steps

- Evaluation using other case studies;
- Evaluation of the cost of the effectiveness of our methodology;
- Extension of YesWorkflow to support the semantic annotation of blocks;
- Implementation of tools.

Acknowledgments

- FAPESP (grant # 2014/23861-4)
- CCES/CEPID (grant # 2013/08293-7)
 - Center for Computational Engineering & Sciences
- LIS (Laboratory of Information Systems)
- Prof. Munir Skaf and his group from Institute of Chemistry Unicamp.

Converting Scripts into Reproducible Workflow Research Objects

Lucas A. M. C. Carvalho, Khalid Belhajjame, Claudia Bauzer Medeiros

lucas.carvalho@ic.unicamp.br

Baltimore, Maryland, USA

October 23-26, 2016

