
Starting Workflow Tasks Before They're Ready
Wladislaw Gusew and Björn Scheuermann
Computer Engineering Group, Humboldt University of Berlin

{gusewwly, scheuermann}@informatik.hu-berlin.de

Abstract
Today‘s science is more and more driven by collecting and evalua-
ting increasing amounts of data. Utilizing Scientific Workflows is one 
suitable method how to organize processing pipelines for this pur-
pose. In this work, we show that performance improvements on the 
execution of existing workflows can be achieved, if the conditions for 
starting selected tasks with certain data access characteristics are 
loosened. We provide a scheme how to identify eligible tasks in a 
given workflow and demonstrate a technique how an earlier start of 

Several workflow execution engines consider a task 

as ready only after all parent tasks have finished exe-

cution. These semantics have proven to work for 

many practical workflows, but we show that the exe-

cution performance can be improved for workflows 

where two properties are present:

1) A task exists that merges multiple outputs of 

parent tasks (reduce pattern).

2) The reduce task accesses its input data in a 

consecutive way.

The figures to the left demonstrate the main idea 

behind our proposed optimization scheme. There 

an eligible task is split into multiple virtual tasks in 

order to be able to start the virtualized task earlier 

without the need to modify the implementation of 

the task or the execution engine. To this end, we uti-

lized three different techniques in combination:

1) profiling black-boxed workflow tasks and infer 

from the profile the eligibility of the task for an 

earlier start,

2) transform the workflow DAG by refining the 

virtualized task as a cluster of tasks which repre-

sent calls to our specific wrapper,

3) a wrapper program which creates locally a 

virtual file system that provides the interface bet-

ween the wrapper and the actual task executable.

We evaluated our approach with the Montage workflow in a simulation by uti-

lizing the WorkflowSim framework. Under many different configurations we 

analyzed how a split of the mAdd aggregation task into multiple virtual tasks 

affects the total runtime of the workflow.

In general, we are able to achieve performance gains by approx. 10% to 30% 

for simple scheduling algorithms in the simulation. Moreover, results indicate 

that the potential of outperforming the original workflow by the transformed 

workflow grows with an increasing computing cluster and workflow size.

Workflow Transformation

Original DAG with T3 and its input data 
characteristics.

Exemplary schedule for the original DAG executed on 
two worker nodes W1 and W2.

Exemplary schedule for the transformed DAG with an 
earlier start of T3 resulting in a reduced makespan.

Transformed DAG where T3 is virtually split at the 
point in time when D2 is accessed for the first time.

tasks can be realized in Pegasus WMS by transforming the workflow 
DAG and by using a wrapper around the task executable during run-
time. Our implemented wrapper handles the reading data accesses 
for task instances so that existing original workflows can be executed 
without the need to modify them. We evaluate our approach in si-
mulations and experiments on real distributed computing resources, 
and are able to observe performance improvements for the Montage 
workflow by a significant reduction of total execution time.

eScience '16: 12th IEEE International Conference
Baltimore, Maryland, USA, October 2016

Simulation Results Experimental Results
In order to evaluate our 

scheme in a realistic set-

ting, we executed the Mon-

tage workflow containing 

133 tasks in the Pegasus 

WMS on a small cluster 

with 10 computing nodes. 

The results underline our 

findings in the simulation 

that the transformation of 

a workflow in order to start 

aggregation tasks earlier can have a measurable impact on the execution per-

formance. We could achieve a reduction of the total workflow runtime by up to 

15%. When the number of workers is increased, both workflow executions can 

benefit from the increased parallelization potential. In the range from 8 to 10 

nodes the curves seem to approach a saturation zone, where more available 

resources do not result in shorter runtimes, because the workflow structure 

does not provide any more parallelization potential.

virt

Execution progress

Execution progress

Execution progress

First read 
access to D1

First read 
access to D1

First read 
access to D2

T

T

T

T

T

T

T

First read 
access to D2

100%

100%

0%

0%

100%0%

First read 
access to D2


