
Starting Workflow Tasks
Before They’re Ready

Wladislaw Gusew, Björn Scheuermann

Computer Engineering Group, Humboldt University of Berlin

Agenda

I Introduction

I Execution semantics

I Methods and tools

I Simulation results

I Experimental results

I Conclusion

1 / 21

Big data in research

2 / 21

Scientific workflow example

I Directed Acyclic Graph
(DAG)

I Executed on distributed
systems

I Aggregation and broadcast
types of tasks

I Demanding for network
resources

3 / 21

Execution semantics

4 / 21

Execution semantics

4 / 21

Execution semantics

I But in reality resources are limited

I Execute only a subset of parent tasks concurrently
(insufficient number of workers)

I Congestion of network (all parent tasks have the same priority)

4 / 21

Example execution

5 / 21

Example execution

5 / 21

Example execution

5 / 21

Example execution

I Network congestion can slow down processing even further
(effects of data losses at the transport protocol layer)

I High delay to the start of the aggregation task

I Low performance and
high execution costs (e.g., in computation clouds)

5 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

6 / 21

What can we do to improve this?

List of actions:

1. Obtain information on task’s input characteristics

2. Refine the workflow and inform the execution engine

3. Let the aggregation task ”feel comfortable” in changed setting

6 / 21

What can we do to improve this?

List of actions:

1. Obtain information on task’s input characteristics

2. Refine the workflow and inform the execution engine

3. Let the aggregation task ”feel comfortable” in changed setting

6 / 21

Obtaining input characteristics

1. Annotations to workflows

2. Manual code review

3. Automated profiling

7 / 21

Automated profiling

I Operating system instrumentation tool

I Enables interception of system calls
(file open, read/write, file close)

I Record and evaluate logfiles with
traces of conducted file accesses.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

R
e
a
d

a
c
c
e
s
s
e
s

[M

B
]

Execution progress [10
8
 CPU cycles]

Reads by mAdd in a small workflow

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18

R
e
a
d

a
c
c
e
s
s
e
s

[M

B
]

Execution progress [10
8
 CPU cycles]

Reads by mAdd in a medium sized workflow

8 / 21

Automated profiling

I Operating system instrumentation tool

I Enables interception of system calls
(file open, read/write, file close)

I Record and evaluate logfiles with
traces of conducted file accesses.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

R
e
a
d

a
c
c
e
s
s
e
s

[M

B
]

Execution progress [10
8
 CPU cycles]

Reads by mAdd in a small workflow

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18

R
e
a
d

a
c
c
e
s
s
e
s

[M

B
]

Execution progress [10
8
 CPU cycles]

Reads by mAdd in a medium sized workflow

8 / 21

Refining workflow by transforming DAG

9 / 21

Refining workflow by transforming DAG

9 / 21

Refining workflow by transforming DAG

9 / 21

Refining workflow by transforming DAG

9 / 21

Realizing virtual task split

I Real task is transparently wrapped

I FUSE enables the setup of a virtual
File system in USEr space

I Access to input files is performed
through our wrapper

I Wrapper is responsible for maintaining
the correct execution logic

10 / 21

Evaluation with the Montage workflow

11 / 21

Simulating workflow execution

I Java-based simulation framework for scientific workflows

I Simulates an execution on a Pegasus/HTCondor stack

I Use provided Montage workflows with 25, 50, 100, 1000 tasks

I Python script conducted DAG transformation of DAX files

I Network configured as bottleneck (by bandwidth limitation)

W. Chen and E. Deelman, ”WorkflowSim: A toolkit for simulating scientific workflows
in distributed environments,” in eScience’12.

12 / 21

Simulation results

13 / 21

Simulation results

13 / 21

Variation of number of tasks

 1

 10

 100

 1000

25 50 100 1000

T
o
ta
l
w
o
rk
fl
o
w

ru
n
ti
m
e

(l
o
g
.)

[s
]

Number of tasks

Simulation results for 50 workers and max-min

Normal Split

15% 19%
25%

31%

14 / 21

Variation of workers

15 / 21

Variation of workers

 100

 150

 200

 250

 300

 350

 400

 450

5 10 50 100

T
o
ta
l
w
o
rk
fl
o
w

ru
n
ti
m
e

[s
]

Number of workers

Simulation results for Montage100 and min-min

Normal Split

10%

14%

26% 25%

16 / 21

Variation of scheduling algorithms

17 / 21

Variation of scheduling algorithms

 0

 50

 100

 150

 200

 250

 300

 350

Min-min
Max-min

Round-robin

HEFT
DHEFT

Random

T
o
ta
l
w
o
rk
fl
o
w

ru
n
ti
m
e

[s
]

Scheduling algorithm

Simulation results for Montage100 on 100 workers

Normal Split

25% 27% 28% 25%

17% 34%

18 / 21

Evaluation in a computing cluster

I Small cluster of up to 10 compute nodes

I Intel i7 CPU@ 2.5GHz, 8GB RAM, connected to common
network switch with 1Gbit/s

I Execute Montage 133 workflow in Pegasus/HTCondor

I Network bandwidth was limited on application layer to
10Mbit/s

I 10 repetitions, mean values with 95% confidence intervals

19 / 21

Measurement results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

T
o
ta
l
w
o
rk
fl
o
w

ru
n
ti
m
e

[s
]

Number of computing nodes

Computing cluster results for 1...10 workers

Original Montage133
Transformed Montage133

20 / 21

Conclusion

I Many ”legacy” workflows exist which are executed with classic
semantics

I Our approach is applicable to aggregation tasks that are often
the most time intensive tasks in a workflow

I By using DAG transformation, no changes to task
implementations and execution engines are required

I Simulation and real experiment show that performance can be
improved by up to 15%

I Potential of outperforming the original workflow grows with
increasing #workers and #tasks

21 / 21

Conclusion

I Many ”legacy” workflows exist which are executed with classic
semantics

I Our approach is applicable to aggregation tasks that are often
the most time intensive tasks in a workflow

I By using DAG transformation, no changes to task
implementations and execution engines are required

I Simulation and real experiment show that performance can be
improved by up to 15%

I Potential of outperforming the original workflow grows with
increasing #workers and #tasks

21 / 21

