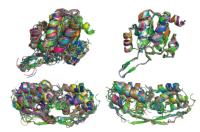
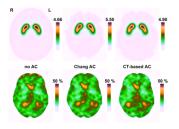


Starting Workflow Tasks Before They're Ready


Wladislaw Gusew, Björn Scheuermann

Computer Engineering Group, Humboldt University of Berlin

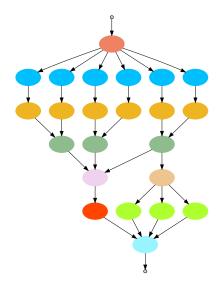

Agenda

- Introduction
- Execution semantics
- Methods and tools
- Simulation results
- Experimental results
- ► Conclusion

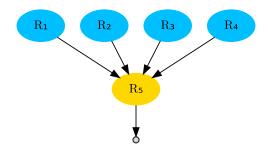

BIG DATA IN RESEARCH

Life sciences

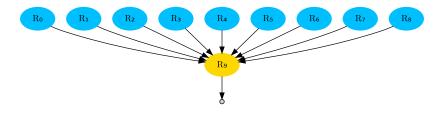
Medicine



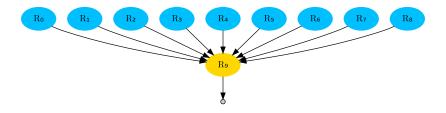
Natural sciences

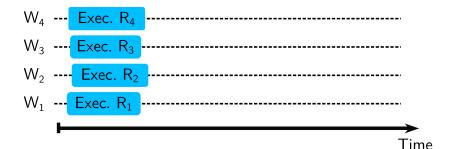

Engineering

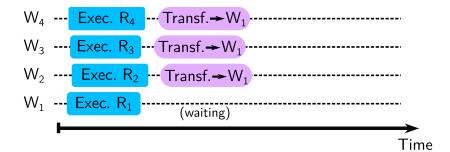
Scientific workflow example

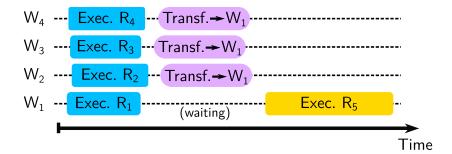


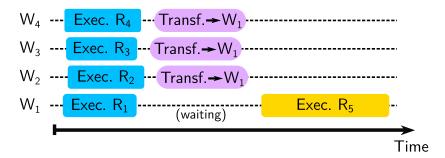
- Directed Acyclic Graph (DAG)
- Executed on distributed systems
- Aggregation and broadcast types of tasks
- Demanding for network resources


EXECUTION SEMANTICS

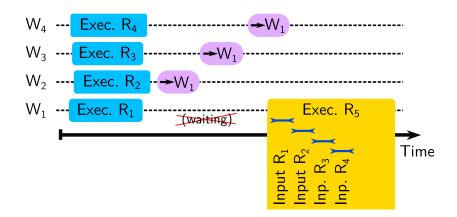

EXECUTION SEMANTICS

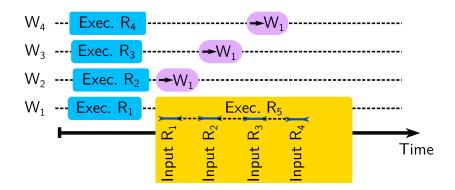


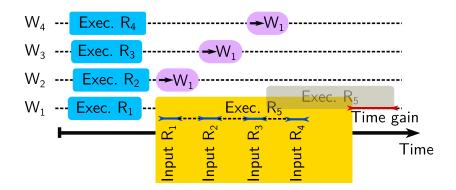

EXECUTION SEMANTICS



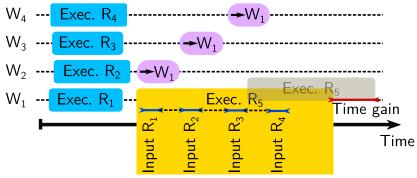
- But in reality resources are limited
- Execute only a subset of parent tasks concurrently (insufficient number of workers)
- ► Congestion of network (all parent tasks have the same priority)

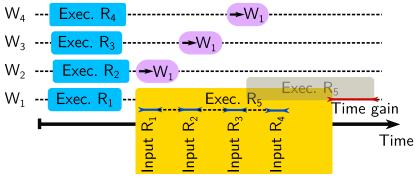





- Network congestion can slow down processing even further (effects of data losses at the transport protocol layer)
- High delay to the start of the aggregation task
- Low performance and high execution costs (e.g., in computation clouds)

$$W_{4} \xrightarrow{} exec. R_{4} \xrightarrow{} exec. R_{4} \xrightarrow{} exec. R_{3} \xrightarrow{} W_{1} \xrightarrow{} W_{1} \xrightarrow{} W_{1} \xrightarrow{} W_{2} \xrightarrow{} exec. R_{3} \xrightarrow{} exec. R_{2} \xrightarrow{} exec. R_{1} \xrightarrow{} W_{1} \xrightarrow{$$


$$W_{4} \xrightarrow{} exec. R_{4} \xrightarrow{} exec. R_{5} \xrightarrow{} exec. R_{6} \xrightarrow{} exec. R_{7} \xrightarrow{} ex$$



What can we do to improve this?

List of actions:

- 1. Obtain information on task's input characteristics
- 2. Refine the workflow and inform the execution engine
- 3. Let the aggregation task "feel comfortable" in changed setting

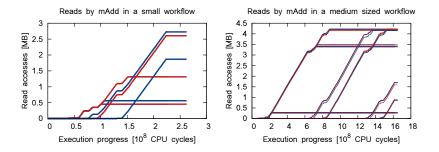
List of actions:

- 1. Obtain information on task's input characteristics
- 2. Refine the workflow and inform the execution engine
- 3. Let the aggregation task "feel comfortable" in changed setting

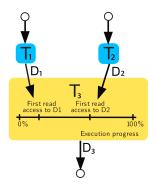
OBTAINING INPUT CHARACTERISTICS

- 1. Annotations to workflows
- 2. Manual code review
- 3. Automated profiling

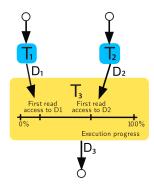
AUTOMATED PROFILING



- Operating system instrumentation tool
- Enables interception of system calls (file open, read/write, file close)
- Record and evaluate logfiles with traces of conducted file accesses.

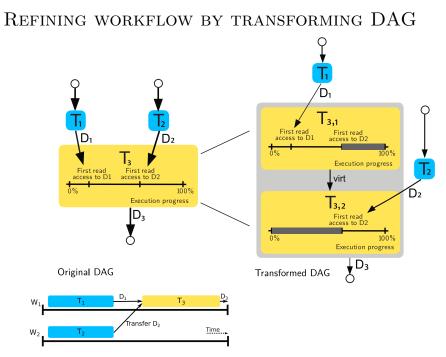

AUTOMATED PROFILING

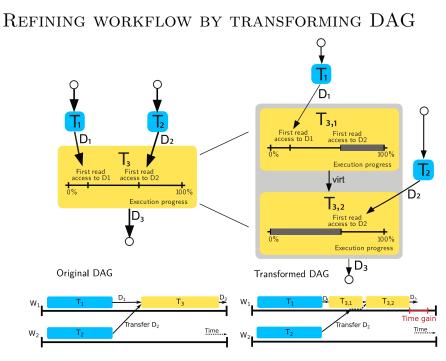
- Operating system instrumentation tool
- Enables interception of system calls (file open, read/write, file close)
- Record and evaluate logfiles with traces of conducted file accesses.



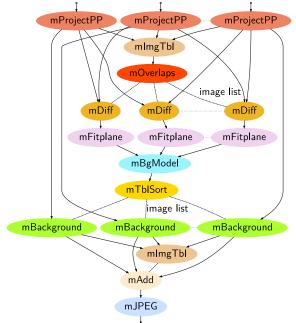
REFINING WORKFLOW BY TRANSFORMING DAG




Original DAG


REFINING WORKFLOW BY TRANSFORMING DAG

Original DAG



REALIZING VIRTUAL TASK SPLIT

- Real task is transparently wrapped
- FUSE enables the setup of a virtual File system in USEr space
- Access to input files is performed through our wrapper
- Wrapper is responsible for maintaining the correct execution logic

EVALUATION WITH THE MONTAGE WORKFLOW

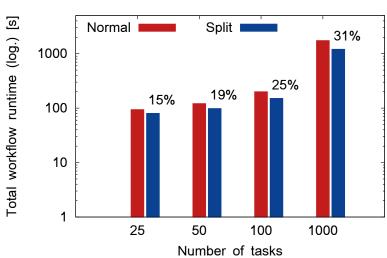
SIMULATING WORKFLOW EXECUTION

- Java-based simulation framework for scientific workflows
- ► Simulates an execution on a Pegasus/HTCondor stack
- ► Use provided Montage workflows with 25, 50, 100, 1000 tasks
- Python script conducted DAG transformation of DAX files
- Network configured as bottleneck (by bandwidth limitation)

W. Chen and E. Deelman, "WorkflowSim: A toolkit for simulating scientific workflows in distributed environments," in eScience'12.

SIMULATION RESULTS

		Scheduling and planning algorithms												
#VMs	#Tasks	Min-Min	Max-Min	Round-robin	HEFT	DHEFT	HEFT Random							
5	25	10.5	15.0	12.9	12.7	11.1	40.5	_						
5	50	10.4	13.1	15.5	-22.8	15.2	39.9	[%]						
5	100	10.1	11.1	12.1	8.7	13.4	12.6							
5	1000	11.1	10.3	10.4	7.3	7.5	10.9	tin						
10	25	14.5	14.5	15.7	11.1	11.3	7.7	runtime						
10	50	14.7	18.9	14.8	12.1	13.3	4.8							
10	100	14.5	17.2	21.2	10.3	19.5	11.3	fl						
10	1000	17.0	16.4	16.1	8.6	10.5	-0.1	workflow						
50	25	14.5	14.5	15.7	11.1	11.3	20.6							
50	50	16.1	19.0	20.0	16.3	13.9	0.0	total						
50	100	25.9	24.6	25.2	25.2	16.7	-0.8	of tc						
50	1000	31.1	30.7	31.1	29.9	15.1	20.7							
100	25	14.5	14.5	15.7	11.1	11.3	-8.4	ti.						
100	50	16.1	19.0	20.0	16.3	13.9	1.4	Reduction						
100	100	24.8	26.6	27.6	25.1	16.7	33.9	Sec						
100	1000	34.2	33.5	33.7	33.1	18.8	4.7	-						

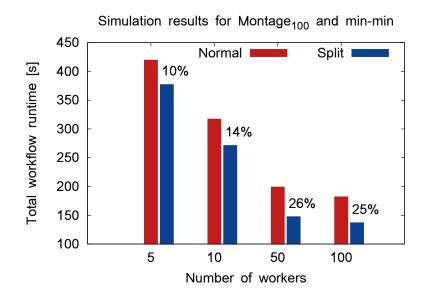

17 14 10 7 4 0 -3 -6 -10 -13 -16 -20 -23

SIMULATION RESULTS

		Scheduling and planning algorithms												
#VMs	#Tasks	Min-Min	Max-Min	Round-robin	HEFT	HEFT DHEFT								
5	25	10.5	15.0	12.9	12.7	11.1	40.5	1_1						
5	50	10.4	13.1	15.5	-22.8	15.2	39.9	%]						
5	100	10.1	11.1	12.1	8.7	13.4	12.6							
5	1000	11.1	10.3	10.4	7.3	7.5	10.9	tin						
10	25	14.5	14.5	15.7	11.1	11.3	7.7	runtime						
10	50	14.7	18.9	14.8	12.1	13.3	4.8							
10	100	14.5	17.2	21.2	10.3	19.5	11.3	l fl						
10	1000	17.0	16.4	16.1	8.6	10.5	-0.1	workflow						
50	25	14.5	14.5	15.7	11.1	11.3	20.6							
50	50	16.1	19.0	20.0	16.3	13.9	0.0	total						
50	100	25.9	24.6	25.2	25.2	16.7	-0.8	oftc						
50	1000	31.1	30.7	31.1	29.9	15.1	20.7							
100	25	14.5	14.5	15.7	11.1	11.3	-8.4	ti.						
100	50	16.1	19.0	20.0	16.3	13.9	1.4	Reduction						
100	100	24.8	26.6	27.6	25.1	16.7	33.9	Sec						
100	1000	34.2	33.5	33.7	33.1	18.8	4.7	<u> </u>						

17 14 10 7 4 0 -3 -6 -10 -13 -16 -20 -23

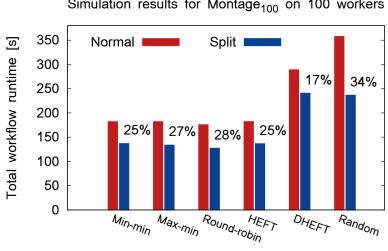
VARIATION OF NUMBER OF TASKS



Simulation results for 50 workers and max-min

VARIATION OF WORKERS

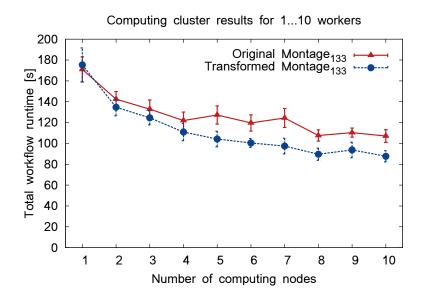
		Scheduling and planning algorithms												
#VMs	#Tasks	Min-Min	-Min Max-Min Rour		HEFT	DHEFT	Random							
5	25	10.5	15.0	12.9	12.7	11.1	40.5							
5	50	10.4	13.1	15.5	-22.8	15.2	39.9	%]						
5	100	10.1	11.1	12.1	8.7	13.4	12.6							
5	1000	11.1	10.3	10.4	7.3	7.5	10.9	Ei.						
10	25	14.5	14.5	15.7	11.1	11.3	7.7	runtime						
10	50	14.7	18.9	14.8	12.1	13.3	4.8							
10	100	14.5	17.2	21.2	10.3	19.5	11.3	flo						
10	1000	17.0	16.4	16.1	8.6	10.5	-0.1	workflow						
50	25	14.5	14.5	15.7	11.1	11.3	20.6							
50	50	16.1	19.0	20.0	16.3	13.9	0.0	total						
50	100	25.9	24.6	25.2	25.2	16.7	-0.8	of tc						
50	1000	31.1	30.7	31.1	29.9	15.1	20.7							
100	25	14.5	14.5	15.7	11.1	11.3	-8.4	Reduction						
100	50	16.1	19.0	20.0	16.3	13.9	1.4	fuc						
100	100	24.8	26.6	27.6	25.1	16.7	33.9	Sec						
100	1000	34.2	33.5	33.7	33.1	18.8	4.7							


VARIATION OF WORKERS

VARIATION OF SCHEDULING ALGORITHMS

		Scheduling and planning algorithms																				
#VMs	#Tasks	Mi	Min-Min		Min-Min		Min-Min		∕lin-Min		Max-Min		Round-rob		HEFT		DHEFT	F	Random			
5	25		10.5		15.0		12.9		12.7		11.1		40.5		_		40					
5	50		10.4		13.1		15.5		-22.8		15.2		39.9		%		37 34					
5	100		10.1		11.1		12.1		8.7		13.4		12.6		le		30					
5	1000		11.1		10.3		10.4		7.3		7.5		10.9		tin		27					
10	25		14.5		14.5		15.7		11.1		11.3		7.7		runtime		24					
10	50		14.7		18.9		14.8		12.1		13.3		4.8				20 17					
10	100		14.5		17.2		21.2		10.3		19.5		11.3		flo		14					
10	1000		17.0		16.4		16.1		8.6		10.5		-0.1		workflow		10					
50	25		14.5		14.5		15.7		11.1		11.3		20.6				7					
50	50		16.1		19.0		20.0		16.3		13.9		0.0		total		4					
50	100		25.9		24.6		25.2		25.2		16.7		-0.8				-3					
50	1000		31.1		30.7		31.1		29.9		15.1		20.7		n of		-6					
100	25		14.5		14.5		15.7		11.1		11.3		-8.4		tioi		-10					
_100	50		16.1		19.0		20.0		16.3		13.9		1.4		Inc		-13 -16					
100	100		24.8		26.6		27.6		25.1		16.7		33.9		Reduction		-20					
100	1000		34.2		33.5		33.7		33.1		18.8		4.7	_	щ		-23					

VARIATION OF SCHEDULING ALGORITHMS


Simulation results for Montage₁₀₀ on 100 workers

Scheduling algorithm

EVALUATION IN A COMPUTING CLUSTER

- ► Small cluster of up to 10 compute nodes
- Intel i7 CPU@ 2.5GHz, 8GB RAM, connected to common network switch with 1Gbit/s
- ► Execute Montage_133 workflow in Pegasus/HTCondor
- Network bandwidth was limited on application layer to 10Mbit/s
- ▶ 10 repetitions, mean values with 95% confidence intervals

Measurement results

CONCLUSION

- Many "legacy" workflows exist which are executed with classic semantics
- Our approach is applicable to aggregation tasks that are often the most time intensive tasks in a workflow
- By using DAG transformation, no changes to task implementations and execution engines are required

CONCLUSION

- Many "legacy" workflows exist which are executed with classic semantics
- Our approach is applicable to aggregation tasks that are often the most time intensive tasks in a workflow
- By using DAG transformation, no changes to task implementations and execution engines are required
- Simulation and real experiment show that performance can be improved by up to 15%
- Potential of outperforming the original workflow grows with increasing #workers and #tasks