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Big data in research
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Scientific workflow example

I Directed Acyclic Graph
(DAG)

I Executed on distributed
systems

I Aggregation and broadcast
types of tasks

I Demanding for network
resources
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Execution semantics

I But in reality resources are limited

I Execute only a subset of parent tasks concurrently
(insufficient number of workers)

I Congestion of network (all parent tasks have the same priority)
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Example execution

I Network congestion can slow down processing even further
(effects of data losses at the transport protocol layer)

I High delay to the start of the aggregation task

I Low performance and
high execution costs (e.g., in computation clouds)
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What can we do to improve this?
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What can we do to improve this?

List of actions:

1. Obtain information on task’s input characteristics

2. Refine the workflow and inform the execution engine

3. Let the aggregation task ”feel comfortable” in changed setting
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Obtaining input characteristics

1. Annotations to workflows

2. Manual code review

3. Automated profiling
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Automated profiling

I Operating system instrumentation tool

I Enables interception of system calls
(file open, read/write, file close)

I Record and evaluate logfiles with
traces of conducted file accesses.
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Refining workflow by transforming DAG
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Realizing virtual task split

I Real task is transparently wrapped

I FUSE enables the setup of a virtual
File system in USEr space

I Access to input files is performed
through our wrapper

I Wrapper is responsible for maintaining
the correct execution logic
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Evaluation with the Montage workflow
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Simulating workflow execution

I Java-based simulation framework for scientific workflows

I Simulates an execution on a Pegasus/HTCondor stack

I Use provided Montage workflows with 25, 50, 100, 1000 tasks

I Python script conducted DAG transformation of DAX files

I Network configured as bottleneck (by bandwidth limitation)

W. Chen and E. Deelman, ”WorkflowSim: A toolkit for simulating scientific workflows
in distributed environments,” in eScience’12.
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Simulation results

13 / 21



Simulation results

13 / 21



Variation of number of tasks
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Variation of workers
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Variation of workers
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Variation of scheduling algorithms
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Variation of scheduling algorithms
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Evaluation in a computing cluster

I Small cluster of up to 10 compute nodes

I Intel i7 CPU@ 2.5GHz, 8GB RAM, connected to common
network switch with 1Gbit/s

I Execute Montage 133 workflow in Pegasus/HTCondor

I Network bandwidth was limited on application layer to
10Mbit/s

I 10 repetitions, mean values with 95% confidence intervals
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Measurement results
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Conclusion

I Many ”legacy” workflows exist which are executed with classic
semantics

I Our approach is applicable to aggregation tasks that are often
the most time intensive tasks in a workflow

I By using DAG transformation, no changes to task
implementations and execution engines are required

I Simulation and real experiment show that performance can be
improved by up to 15%

I Potential of outperforming the original workflow grows with
increasing #workers and #tasks
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