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The use of cloud resources for processing and analysing medical data has the potential to revolutionise the treatment of a number of chronic conditions. For
example, it has been shown that it is possible to manage conditions such as diabetes, obesity and cardiovascular disease by increasing the right forms of physical
activity for the patient. Typically, movement data is collected for a patient over a period of several weeks using a wrist worn accelerometer. This data, however, is
large and its analysis can require significant computational resources. Cloud computing offers a convenient solution as it can be paid for as needed and is capable of
scaling to store and process large numbers of data sets simultaneously. However, because the charging model for the cloud represents, to some extent, an unknown
cost and therefore risk to project managers, it is important to have an estimate of the likely data processing and storage costs that will be required to analyse a set of
data. This could take the form of data collected from a patient in clinic or of entire cohorts of data collected from large studies. If, however, an accurate model was
available that could predict the compute and storage requirements associated with a piece of analysis code, decisions could be made as to the scale of resources
required in order to obtain results within a known timescale.

Using the e-Science Central Provenance Model
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The system has the capability to construct multiple models for each

block and use the most appropriate. This can account for the

| following types of scenario:
Data capture architecture

Tooling External APl
Pl ——— > REST

- aven ugins
- File uploader
- Domain specific apps/websites

T T HTTP '

pen
Shibboleth

External Auth —| <+

Data was captured via JMS

.. queues to minimise the impact

on the running system.

Models were build periodically
on separate cloud resources and
used to generate predictions

Movement monitoring results

Good models were obtained for
processing of GENEActiv data.
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Observe: d Execution Data

Observed Execution Data

No relationship: There is no discernable
relationship between block execution
time and any collected data.

Linear relationship: The block displays a
linear relationship between execution time
and the collected data

Non-linear relationship: The block displays a more
complex non-linear relationship between execution
time and the collected data

Modelling whole workflow execution time

Models for entire workflow runs were generated by linking
together predicitons for individual blocks. This worked well for

simple workflows
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