
Postgres

Neo4j

Provenance Store

e-SC DB

Postgres
MySQL
SQL Server

e-SC Blob
Store

Filesystem
S3
Postgres
Azure Blob Store
HDFS

Archive
Filesystem
AWS Glacier

New e-SC
Blob Store

Migration Queue

Provenance Queue

Archive Queues

Workflow Engines
Workflow Queue

Control Topic
Service/Lib

Cache

OpenID
Shibboleth

External Auth

REST

RMI

Private API

Security
 - ACL
 - Authentication

User MGMT
- Friends
- Groups
- Projects
- Quotas

Processing
- Services
- Workflows
- Libs

Provenance/
Audit
- Capture
- Query/Search
- Presentation

External API
REST HTTP

Storage
- Versioning
- Archiving

SWORD

Tooling
- Maven Plugins
- File uploader

- Domain specific apps/websites

Data	capture	architecture

Prediction	of	workflow	execution	time	using	provenance	traces:	
practical	applications	in	medical	data	processing

Hugo	Hiden,	Simon	Woodman	&	Paul	Watson
Newcastle	University

The use of cloud resources for processing and analysing medical data has the potential to revolutionise the treatment of a number of chronic conditions. For
example, it has been shown that it is possible to manage conditions such as diabetes, obesity and cardiovascular disease by increasing the right forms of physical
activity for the patient. Typically, movement data is collected for a patient over a period of several weeks using a wrist worn accelerometer. This data, however, is
large and its analysis can require significant computational resources. Cloud computing offers a convenient solution as it can be paid for as needed and is capable of
scaling to store and process large numbers of data sets simultaneously. However, because the charging model for the cloud represents, to some extent, an unknown
cost and therefore risk to project managers, it is important to have an estimate of the likely data processing and storage costs that will be required to analyse a set of
data. This could take the form of data collected from a patient in clinic or of entire cohorts of data collected from large studies. If, however, an accurate model was
available that could predict the compute and storage requirements associated with a piece of analysis code, decisions could be made as to the scale of resources
required in order to obtain results within a known timescale.

Using	the	e-Science	Central	Provenance	Model

The e-Science Central Provenance Model captures details of code
versions, data sources and sizes, execution times and transfer data
sizes for every invocation of a block within a workflow

This provenance model was extended with a number of additional
parameters (CPU usage, concurrent workflow count, machine
architecture etc) and the data used to build predictive models for
workflow block executions

Data was captured via JMS
queues to minimise the impact
on the running system.

Models were build periodically
on separate cloud resources and
used to generate predictions

Model	types

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

E
x
e
c
u
ti
o
n
 T

im
e

Observed Execution Data

E
x
e
c
u
ti
o
n
 T

im
e

Observed Execution Data

No	relationship:	There	is	no	discernable	
relationship	between	block	execution	
time	and	any	collected	data.

Linear	relationship:	The	block	displays	a	
linear	relationship	between	execution	time	
and	the	collected	data

Non-linear	relationship:	The	block	displays	a	more	
complex	non-linear	relationship	between	execution	
time	and	the	collected	data

The system has the capability to construct multiple models for each
block and use the most appropriate. This can account for the
following types of scenario:

Movement	monitoring	results

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200 400 600 800 1000 1200 1400 1600

P
re

d
ic

te
d
 (

se
co

n
d
s)

Actual (seconds)

Prediction (RMSE=34.670, r2=0.987)
Fitted
Ideal

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

Pr
ed

ic
te

d
(K

B)

Actual (KB)

Prediction
Fitted
Ideal

Output	size	model Duration	model

Good models were obtained for IO intensive code such as GGIR
processing of GENEActiv data.

Modelling	whole	workflow	execution	time

Models for entire workflow runs were generated by linking
together predicitons for individual blocks. This worked well for
simple workflows

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90 100 110

Pr
ed

ic
te

d
(s

ec
on

ds
)

Actual (seconds)

Training Prediction (RMSE=5.008,r2=0.980)
Testing Prediction (RMSE=4.698,r2=0.981)

Fitted Training
Ideal

