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Data	capture	architecture

Prediction	of	workflow	execution	time	using	provenance	traces:	
practical	applications	in	medical	data	processing

Hugo	Hiden,	Simon	Woodman	&	Paul	Watson
Newcastle	University

The use of cloud resources for processing and analysing medical data has the potential to revolutionise the treatment of a number of chronic conditions. For
example, it has been shown that it is possible to manage conditions such as diabetes, obesity and cardiovascular disease by increasing the right forms of physical
activity for the patient. Typically, movement data is collected for a patient over a period of several weeks using a wrist worn accelerometer. This data, however, is
large and its analysis can require significant computational resources. Cloud computing offers a convenient solution as it can be paid for as needed and is capable of
scaling to store and process large numbers of data sets simultaneously. However, because the charging model for the cloud represents, to some extent, an unknown
cost and therefore risk to project managers, it is important to have an estimate of the likely data processing and storage costs that will be required to analyse a set of
data. This could take the form of data collected from a patient in clinic or of entire cohorts of data collected from large studies. If, however, an accurate model was
available that could predict the compute and storage requirements associated with a piece of analysis code, decisions could be made as to the scale of resources
required in order to obtain results within a known timescale.

Using	the	e-Science	Central	Provenance	Model

The e-Science Central Provenance Model captures details of code
versions, data sources and sizes, execution times and transfer data
sizes for every invocation of a block within a workflow

This provenance model was extended with a number of additional
parameters (CPU usage, concurrent workflow count, machine
architecture etc) and the data used to build predictive models for
workflow block executions

Data was captured via JMS
queues to minimise the impact
on the running system.

Models were build periodically
on separate cloud resources and
used to generate predictions

Model	types
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No	relationship:	There	is	no	discernable	
relationship	between	block	execution	
time	and	any	collected	data.

Linear	relationship:	The	block	displays	a	
linear	relationship	between	execution	time	
and	the	collected	data

Non-linear	relationship:	The	block	displays	a	more	
complex	non-linear	relationship	between	execution	
time	and	the	collected	data

The system has the capability to construct multiple models for each
block and use the most appropriate. This can account for the
following types of scenario:

Movement	monitoring	results
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Good models were obtained for IO intensive code such as GGIR
processing of GENEActiv data.

Modelling	whole	workflow	execution	time

Models for entire workflow runs were generated by linking
together predicitons for individual blocks. This worked well for
simple workflows
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