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How	long	will	my	program	take	to	run?



Part of a bigger picture

How	long	will	my	program	take	to	run?

What	version	of	the	program	ran?

How	was	a	result	generated?

Can	I	repeat	my	results?

What	are	the	implications	of	errors



Provenance Research

• Used to answer these questions
• Important in scientific research
• Lots of work done to capture and represent 

provenance
• Active research area

OPM PROV



e-Science Central

• Source of all our provenance data
– Platform used for many projects

• Repository of code and data
– Users can add their own code

• Well instrumented and understood
– Used to collect OPM
– Now PROV

• Plenty of data sets
– Diverse projects
– Large applications

• Workflows for data processing



The workflow model

• Simple workflow implementation
– Acyclic directed graph
– Composed of connected “Blocks”

– Deploys at reasonable scale in clouds



Modelling performance

• Execution time for a single block
– Workflow is some combination of individual block 

models

• There should be some predictors:
– The input data sizes
– The configuration of the block
– The machine it is running on

• The issues are:
– What types of model are most appropriate
– How accurate are they



Execution time of a block

time=f(input-size, block-code, block-settings, random-factors)

More data 
increases 

execution time

Each block has 
different 

characteristics, 
so a model is 

needed for each 
block

The 
configuration of 

the block 
instance can 

change 
behavior

Machine load, 
network traffic, 

hardware 
variations,…

A workflow is a connected pathway of blocks…



Requirements for a “real” system

• Proactively build models
– In response to more data

– When more blocks are added

• Select the most appropriate model
– Pick based on best error

• Aim to always return some estimate
– Mechanisms to return estimate if no models are 

available



Complications

• Gathering data
– Collect data ”non-invasively”

• Model types
– Different blocks display different characteristics
– Different algorithms and versions

• Dynamic environment
– New blocks being added
– Block behaviour only becomes apparent as data 

is collected



Data collected via provenance

• Provenance collection already captures:
– Data sizes

– Code versions
– Algorithm settings

• Extra instrumentation for
– Block start and end times

– Number of concurrent workflows
– CPU / Memory usage
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Data Models



Data collected

• Each execution of a block creates a single 
data point:

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size

Identifying	
data

Model	X	data Model	Y	data

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size



Block models
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Observed Execution DataBlocks	may	exhibit	very	
different	behaviors	
depending	on	their	
implementation	details	/	
configuration

No	relationship

Linear	relationship

Non-linear	relationship



Selecting the most appropriate model
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Dynamic model updating

• Impossible (difficult) to know what the best 
model will be
– Gathering more data may change our view

• Need to implement model updating
– Models can be rebuilt and replaced on the fly

• Return best available estimate at a given time
– This may improve



“Panel of experts” pattern

• Maintain a suite of different models
– Rebuild them all when new data arrives

– Use the best one until the next update

• Drug modelling project:

Quantitative	Structure	Activity	Relationship

f( )Activity		≈



Model fallbacks
• What happens if there is no model?
– Still want to return something

• We used the following logic:
– Use version agnostic model
– Use average execution time of block
– Use average execution time of all blocks

• This will always return some prediction as 
long as a single block of any type has 
executed



Medical data processing

• Measure acceleration in 3-axes
– Typically 100Hz

– Worn for 2 weeks

– Analyse sleep patterns, general 
activity levels etc

• Data collected and analysed
– Clinicians view results and modify 

exercise regime

– Collections of 100k data sets (24TB)

Wrist worn 
accelerometers
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Not always successful
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Predicting Workflow duration
Modelling is complicated by connected nature of workflow

All data for model 
readily available… … not the case here

?

?

?

?

?

?

?
how big are the 
intermediate data 
transfers



Data volume produced by a block

size=f(input-size, block-code, block-settings, random-factors)

More data 
increases 

execution time

Each block has 
different 

characteristics, 
so a model is 

needed for each 
block

The 
configuration of 

the block 
instance can 

change 
behavior

Machine load, 
network traffic, 

hardware 
variations, 

phase of moon



Modelling total execution time

Execution time = Sum(block predictions)



Results
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Chemical	property	modelling
• Models	built	for	each	individual	

block
• Prediction	generated	by	

propagating	size	predictions



Modelling workflows: caveats

• Much harder to model workflow duration
– Propagation of errors

• Works for simple workflows
– Rapidly fails for larger workflows

• Possible solutions
– More data collection
– Model groups of blocks

– Build models of whole workflows



Conclusions

• Extended provenance capture to build predictive 
models
– Asynchronous collection of data and model building

• Demonstrated it is possible to model block 
execution time

• Show it may be possible to combine predictions 
to estimate workflow execution time
– Large workflows / poor block models are issues


