
Prediction of workflow execution time
using provenance traces: practical
applications in medical data processing

Hugo Hiden
Simon Woodman
Paul Watson

How	long	will	my	program	take	to	run?

Part of a bigger picture

How	long	will	my	program	take	to	run?

What	version	of	the	program	ran?

How	was	a	result	generated?

Can	I	repeat	my	results?

What	are	the	implications	of	errors

Provenance Research

• Used to answer these questions
• Important in scientific research
• Lots of work done to capture and represent

provenance
• Active research area

OPM PROV

e-Science Central

• Source of all our provenance data
– Platform used for many projects

• Repository of code and data
– Users can add their own code

• Well instrumented and understood
– Used to collect OPM
– Now PROV

• Plenty of data sets
– Diverse projects
– Large applications

• Workflows for data processing

The workflow model

• Simple workflow implementation
– Acyclic directed graph
– Composed of connected “Blocks”

– Deploys at reasonable scale in clouds

Modelling performance

• Execution time for a single block
– Workflow is some combination of individual block

models

• There should be some predictors:
– The input data sizes
– The configuration of the block
– The machine it is running on

• The issues are:
– What types of model are most appropriate
– How accurate are they

Execution time of a block

time=f(input-size, block-code, block-settings, random-factors)

More data
increases

execution time

Each block has
different

characteristics,
so a model is

needed for each
block

The
configuration of

the block
instance can

change
behavior

Machine load,
network traffic,

hardware
variations,…

A workflow is a connected pathway of blocks…

Requirements for a “real” system

• Proactively build models
– In response to more data

– When more blocks are added

• Select the most appropriate model
– Pick based on best error

• Aim to always return some estimate
– Mechanisms to return estimate if no models are

available

Complications

• Gathering data
– Collect data ”non-invasively”

• Model types
– Different blocks display different characteristics
– Different algorithms and versions

• Dynamic environment
– New blocks being added
– Block behaviour only becomes apparent as data

is collected

Data collected via provenance

• Provenance collection already captures:
– Data sizes

– Code versions
– Algorithm settings

• Extra instrumentation for
– Block start and end times

– Number of concurrent workflows
– CPU / Memory usage

Postgres

Neo4j

Provenance Store

e-SC DB

Postgres
MySQL
SQL Server

e-SC Blob
Store

Filesystem
S3
Postgres
Azure Blob Store
HDFS

Archive
Filesystem
AWS Glacier

New e-SC
Blob Store

Migration Queue

Provenance Queue

Archive Queues

Workflow Engines
Workflow Queue

Control Topic
Service/Lib

Cache

OpenID
Shibboleth

External Auth

REST

RMI

Private API

Security
 - ACL
 - Authentication

User MGMT
- Friends
- Groups
- Projects
- Quotas

Processing
- Services
- Workflows
- Libs

Provenance/
Audit
- Capture
- Query/Search
- Presentation

External API
REST HTTP

Storage
- Versioning
- Archiving

SWORD

Tooling
- Maven Plugins
- File uploader

- Domain specific apps/websites

e-SC Architecture

Postgres

Neo4j

Provenance Store

e-SC DB

Postgres
MySQL
SQL Server

e-SC Blob
Store

Filesystem
S3
Postgres
Azure Blob Store
HDFS

Archive
Filesystem
AWS Glacier

New e-SC
Blob Store

Migration Queue

Provenance Queue

Archive Queues

Workflow Engines
Workflow Queue

Control Topic
Service/Lib

Cache

OpenID
Shibboleth

External Auth

REST

RMI

Private API

Security
 - ACL
 - Authentication

User MGMT
- Friends
- Groups
- Projects
- Quotas

Processing
- Services
- Workflows
- Libs

Provenance/
Audit
- Capture
- Query/Search
- Presentation

External API
REST HTTP

Storage
- Versioning
- Archiving

SWORD

Tooling
- Maven Plugins
- File uploader

- Domain specific apps/websites

Data capture architecture

Provenance	and	performance	data	capture

Data	/	model	storage

Model	building	/	updating

Data Models

Data collected

• Each execution of a block creates a single
data point:

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size

Identifying	
data

Model	X	data Model	Y	data

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size

ID,	Version Setting_1,	Setting_2,	Memory	Use,	Input_size Duration,	Output_size

Block models

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

E
x
e
c
u

ti
o

n
 T

im
e

Observed Execution Data

E
x
e

c
u
ti
o
n
 T

im
e

Observed Execution DataBlocks	may	exhibit	very	
different	behaviors	
depending	on	their	
implementation	details	/	
configuration

No	relationship

Linear	relationship

Non-linear	relationship

Selecting the most appropriate model

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

Selecting the most appropriate model

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

Selecting the most appropriate model

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

Selecting the most appropriate model

E
x
e

c
u

ti
o

n
 T

im
e

Observed Execution Data

Dynamic model updating

• Impossible (difficult) to know what the best
model will be
– Gathering more data may change our view

• Need to implement model updating
– Models can be rebuilt and replaced on the fly

• Return best available estimate at a given time
– This may improve

“Panel of experts” pattern

• Maintain a suite of different models
– Rebuild them all when new data arrives

– Use the best one until the next update

• Drug modelling project:

Quantitative	Structure	Activity	Relationship

f()Activity		≈

Model fallbacks
• What happens if there is no model?
– Still want to return something

• We used the following logic:
– Use version agnostic model
– Use average execution time of block
– Use average execution time of all blocks

• This will always return some prediction as
long as a single block of any type has
executed

Medical data processing

• Measure acceleration in 3-axes
– Typically 100Hz

– Worn for 2 weeks

– Analyse sleep patterns, general
activity levels etc

• Data collected and analysed
– Clinicians view results and modify

exercise regime

– Collections of 100k data sets (24TB)

Wrist worn
accelerometers

Results

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 55 60 65 70 75 80 85 90 95 100

Pr
ed

ic
te

d
(K

B)

Actual (KB)

Prediction
Fitted
Ideal

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500
Pr

ed
ic

te
d

(s
ec

on
ds

)
Actual (seconds)

Prediction
Fitted
Ideal

Output	size	model Duration	model

Physical	Activity	Classification	(PAC1)

Results

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200 400 600 800 1000 1200 1400 1600

P
re

d
ic

te
d

 (
se

co
n
d
s)

Actual (seconds)

Prediction (RMSE=34.670, r2=0.987)
Fitted
Ideal

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

Pr
ed

ic
te

d
(K

B)

Actual (KB)

Prediction
Fitted
Ideal

GGIR	GENEActiv processing

Output	size	model Duration	model

Not always successful

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

Pr
ed

ic
te

d
(s

ec
on

ds
)

Actual (seconds)

Prediction
Fitted
Ideal

Predicting Workflow duration
Modelling is complicated by connected nature of workflow

All data for model
readily available… … not the case here

?

?

?

?

?

?

?
how big are the
intermediate data
transfers

Data volume produced by a block

size=f(input-size, block-code, block-settings, random-factors)

More data
increases

execution time

Each block has
different

characteristics,
so a model is

needed for each
block

The
configuration of

the block
instance can

change
behavior

Machine load,
network traffic,

hardware
variations,

phase of moon

Modelling total execution time

Execution time = Sum(block predictions)

Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90 100 110

Pr
ed

ic
te

d
(s

ec
on

ds
)

Actual (seconds)

Training Prediction (RMSE=5.008,r2=0.980)
Testing Prediction (RMSE=4.698,r2=0.981)

Fitted Training
Ideal

Chemical	property	modelling
• Models	built	for	each	individual	

block
• Prediction	generated	by	

propagating	size	predictions

Modelling workflows: caveats

• Much harder to model workflow duration
– Propagation of errors

• Works for simple workflows
– Rapidly fails for larger workflows

• Possible solutions
– More data collection
– Model groups of blocks

– Build models of whole workflows

Conclusions

• Extended provenance capture to build predictive
models
– Asynchronous collection of data and model building

• Demonstrated it is possible to model block
execution time

• Show it may be possible to combine predictions
to estimate workflow execution time
– Large workflows / poor block models are issues

