Fast Window Aggregate on Array Database
by Recursive Incremental Computation

L1 Jiang Hideyuki Kawashima Osamu Tatebe

University of Tsukuba, Japan

Agenda

* Background

* Proposed Method
e Evaluation
 Related Work

* Summary

Background: Big Scientific Data

* Huge multi-dimensional data is generated in many sciences
(MODIS satellite, Subaru telescope, ...)

* Naturally represented by array than relation
Longitude

Latitude

NASA Earth Science Data Product: MODIS Satellite Sensing Data
Credit: https://Ipdaac.usgs.gov/dataset discovery/modis

System — Array Database

* Array Database takes ‘array’ instead
of ‘relation’ as basic data model

[1,2,3].
* Elements N 12 13 (4]
— Dimensions: values determine (ogf (2:07) [(5,05) | (409) | (2,08) | (1,02)
coordinators of cells. (17] (5,05) | (3,05) | (5,09) | (505) | (505)
— Attributes: same concept as in table, [2]] (4,03) | (6,0.1) | (6,0.5) | (2,0.1) | (7,04)
stored 1n cells. [3]](4,025)] (6,045) (6,03) | (1,0.1) | (0,03)
* Advantages: [41] (6,05) [(1,06)] (5,05) [(2,015)] (2,04)
— Suitable with multi-dimensional data. Array Data Model
— Powerful data analysis tool for Credit: the SciDB development team
array data.

[1] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The multidimensional database system rasdaman,” in
SIGMOD Record, vol. 27, no. 2. ACM, 1998, pp. 575-577.

[2] M. Kersten, Y. Zhang, M. Ivanova, and N. Nes, “Scigl, a query language for science applications,” in EDBT/ICDT Workshop
on Array Databases.ACM, 2011, pp. 1-12.

[3] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier, O. Ratzesberger, and S. B. Zdonik, “Requirements for science
data bases and scidb.” in CIDR, 2009, pp. 173-184.

Window 2*2

Target Operator — Window Aggregates

-
* Application of window aggregate —

— Preprocess on raw data

— Visualize results of other analysis tasks on purpose

» Task: compute aggregate functions over a moving window with given size.

— Arguments:
Aggregate to compute Source array Window size

\ — /

Query: select max(v) from arr grouping by window (2,3)

4 7 3 1 8 7 7 8 8 8
5 2 ‘ 9 6 4 4
3 4 9 9 8 6 6
7 7 8 2 6 7 7 8 6 6
Source Array: arr Result Array

Aggregates: sum/avg, var/stdev, min/max

Naive Method — Inefticient

* Naive method
— Scan all the elements in window, and compute its aggregate.

— Inefficient: redundant calculation exists.

* Consider adjacent windows:

— Large overlapping area.

Previougk window

— Few cells are different.

° Large common area | Moving direction

— Re-compute the same area ?

— Waste of Resource.

Current window
Deleted cells Inserted cells
6

Agenda

e Background

* Proposed Method

e Evaluation
 Related Work

* Summary

Proposal Overview

* Central Idea: Incremental Computation (IC) Scheme
— @Goal: eliminate redundant calculation

— Simple trick: buffer and reuse previously computed intermediate
aggregate values

 Previous Work

— Basic IC method [4]: reduces redundant calculation in one dimension

* Proposal

— Recursive IC method: eliminates all redundant calculation in every
dimension

* Six aggregate functions improved

— sum/avg, var/stdev, min/max

[4] Li Jiang, Hideyuki Kawashima, Osamu Tatebe: Incremental window aggregates over array database.
IEEE International Conference on Big Data, pages 183—188, 2014.

Primary Task : 1-D IC process

Current window / cell b
\

.
.
;] di
:D \ R
. .
% i

Delete a
Insert b/
Result /
Array | | | ...
For different group of aggregate operator, — Sum-list: sum/avg
different data structure is designed to achieve — Var-list: var/stdev
efficient IC. — Queue: min/max

Buffer Tool Example: Min Queue

* Min Queue: un-decreasing circle queue
— Updates: maintain the queue so that,
For Queue[aq, a,, as..., a,], it satisfies:
Vi,j €[1,n]that i<j,a; <a;

— Result Fetch: return the head element (= the smallest element)

* Example: window size = 4

P T
' - The new Cell The current window
-
Min-queue 2 | | 13

Result Array 7 7 8

1-D to n-D: Basic IC Method

* To apply IC scheme from 1-D to n-D window aggregate.

e Process

— Solve a n-D window aggregate task as in multiple 1-D subtasks.

— For each 1-D subtask, borrow the 1-D IC process with little modification

A basic window

N

g
.
-
g
.
L

A
D,
Computation round of this basic window D,
(Slmllar tO I_D IC process) (Selecte>d as the IC
dimension)

11

Detect of basic IC method

Actually, redundant calculation still exist

D, (IC dimensio)n)

D, Computation round

A
Y

Basic window a 4

Basic window b+

Incremental computation dimension

* Basic IC eliminates redundant works in IC dimension, but in other
dimensions, unnecessary calculation still exists.

Proposal : Recursive IC Method

Recursive Dimensionality Reduction
— Keeping breaking a n-D window aggregate down to multiple smaller window aggregates.

Multiple levels workflow
Each level has its unique IC dimension.
— Level 1: n-D task (the original window aggregate) | window unit in level 1

— Level 2: (n-1)-D tasks

oooooo

— Level n: I-D tasks

First basic {<W1

window

Last basic

window

A window 1n level 2 has a corresponding

-

Level 1: |
IC over dimension 2

Level 2:
IC over
dimension 1

V\§
N
L2
b
+

Recursive IC Method (3D example)

R

(4

et

+ 444
reoees

L

Level 1(3D)
IC over dimension 3

Level 3(1D)
IC over

dimension 1

Contribution: a real n-dimensional solution
— No redundant calculation during the whole process at all

Tradeoff: more extra space cost, one buffer tool maintained for
each computation round

Level 2(2D)
IC over
dimension 2

Agenda

e Background
* Proposed Method

* Evaluation
— Overall Comparison

— Earth Science Benchmark
— Synthetic Workload

e Related Work

* Summary

16

Evaluation

* SciDB
— An open-source array database system
— Version : 14.12

— Proposed method implemented into SciDB and tested comparing
with SciDB’s built-in naive method

* Environment
A SciDB cluster consists of 4 nodes, each node has the same setting as
— Operating System : CentOS 6.5
— CPU : Intel(R) Xeon(R) E5620 2.40GHz
— Main Memory : 24GB

Dimension: 2

Overall Comparison

Array size: 1000 X 1000 (small)
Operator: Variance (all 6 operator performs similar)

Result: naive (SciDB) and basic-IC are slow, will be omitted.

Execution Time (s)

60

20

10

0

OX5

I I I
Naive (SciDB) ——
Matelialized (SciDB) —#+—
Basic-IC (BigData'14) 7
Recursive-IC (Proposed)

10x10 15x15 20x20 25x25 30x30 35x35 40x40

Window Size (cells)

Terra satellite scanning the Earth [5]

Earth Science
Benchmark (1/3)

* Areal application of earth
scientific data analysis [5] [6]
— Window average operator
— Used to reduce resolution
— On purpose of visualizing.
* Data: NASA MODIS product

— 45 MODIS files downloaded (each
160MB)

— Preprocessed, loaded into SciDB cluster
— Sparse (a lot of empty cells, >30%)

NDVI result visualized
after window aggregate [6]

[5] Gary Lee Planthaber Jr. Modbase: A scidb-powered system for large-scale distributed storage and analysis of modis earth
remote sensing data. PhD thesis, Massachusetts Institute of Technology, 2012.

[6] Earth science benchmark over modis data. http://people.csail.mit.edu/jennie/elasticity benchmarks.html

Earth Science

Benchmark (2/3)

Input: NDVI

Window size: 0.05° X 0.05°

Operator: average

Result
* For 30x30 case, x10 improvement.

Execution Time (s)

1400

1200

1000

800

600

400

200

30° x 30°

I I I I
Materialized (SciDB) I
Recursive-IC (Proposed) I

Al

11x11 21x21 31x31 41x41

Window Size (cells)

51x51

Execution Time (s)

Execution Time (s)

250

200

150

100

50

500

400

300

200

100

10° x 10°

I I I
Materialized (SciDB) .
Recursive IC

ALl

|

11x11 21x21 31x31 41x41 51x51
Window Size (cells)
20° x 20°
I I I
Materialized (SciDB) I |
Recursive |C l
11x11 21x21 31x31 41x41 51x51

Window Size (cells)

Earth Science Benchmark (3/3)
Space Analysis

Extra Space Cost of Recursive IC

Extra Space (Array Scope)

Chunk b IOOT}ranule 19471\/?]3
20° Granule 77.90MB

30° Granule .

Chunk Setting

Data Size Per Chunk 3.81MB

» Total Extra space cost of buffer tools seems big.
* Actually in SciDB, window aggregate 1s executed chunk by chunk
* Only one single chunk’s buffer tools are maintained, totally acceptable.

Area Size Array Size Cells Density § Data Size

10° x 10° | 10000 x 10000 | 28787550 § 28.79% | S559MB
20° x 20° | 20000 x 20000 | 90526766 § 22.63% § 1.78GB
30° x 30° | 30000 x 30000 | 240706765 § 26.75% § 4.32GB 21

Synthetic Dataset | | |
Materialized (SciDB) ——
. 100 E Recursive IC ———
* Operator: variance = :
* Attribute values of the arrays were randomly ‘3 [
generated in the range [0, 100,000]. E
5 10
Parameter | Window Array Dim. =))
o
Window Fix Fix L;u'é
Array Fix Fix 1
Dim. Fix Fix | | | |

20x20 40x40 60x60 80x80 100x100120x120

Window Size (cells)

n | | F T T T T]
- Materialized (SciDB) —— i Materialized (SciDB) —— g
I Recursive IC —— Recursive |IC ———
I _. 100 = E
100 £ % -) A
; E g Array Size i
B = 10 ¢ E
- c =]
Q C]
10 = 5 2 5 g C .
3l Dimensionality o —]
C > 1L -
- L g 3
1, 5_ T
01 1 L 1 L 1 L 1 Ll 1 L1
2D 3D 4D SD 6D 1000 10000 100000 1x106 1x107 1x108

Dimensionality Array Size (cells)

Agenda

e Background
* Proposed Method
* Evaluation

 Related Work
* Summary

23

Related Work

* Incremental Computation of aggregates
— Sliding window aggregate of stream data [7]

— Temporal Aggregates of interval data [§]

—> Similar basic ideas. Different targeting data types and queries. Hard to evaluate
performance between their work with this one.

* Image processing
— Similar incremental computation used to accelerate filter calculation

— Difference: limited to 2 dimensions.

* Improving scientific features of array databases
— Data versioning [9], Data uncertainty [10]

[7] Jin Li, David Maier etc. No Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over Data

Streams. SIGMOD Rec. 34, 1, 2005.
[8] Jun Yang, Jennifer Widom. Incremental computation and maintenance of temporal aggregates. VLDB J.

Vol. 12, No. 3, pp. 262-283, 2003.
[9] A. Seering, P. Cudre-Mauroux, S. Madden, and M. Stonebraker, “Efficient versioning for scientific array

databases,” in ICDE, 2012, pp. 1013-1024.
[10] T. Ge and S. Zdonik, “Handling uncertain data in array database systems,” in ICDE, 2008, pp. 140-1149.

Summary

* Proposal

— Fast window aggregates with recursive incremental computation
for sum/avg/var/stddev/min/max over array database.

e Result

— Proposed recursive IC method 1s the fastest.
— In sparse Earth science benchmark, recursive method 1s x10 faster.

— In dense synthetic test, recursive method 1s x64 faster.

e Future direction

— Find applications: dense data
* Meteorological simulation

* Cosmological simulation (with Subaru team)

Code 1s available on GitHib
https://github.com/ljiangjl/Recursive-IC-Window

