CAMPUS COMPUTE CO-OPERATIVE (CCC): A SERVICE ORIENTED CLOUD FEDERATION

Authors Andrew Grimshaw (UVA) Md Anindya Prodhan (UVA) Alexander Thomas (UVA) Craig Stewart (IU) Richard Knepper (IU)

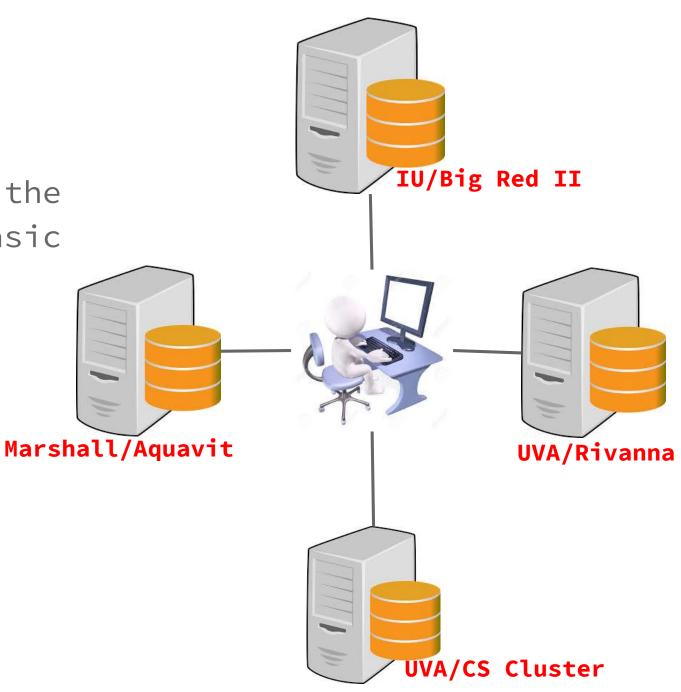
AGENDA

- Motivation
- •What is CCC
- CCC system model
- Using the CCC
- Social, political and market aspects
- Related Work
- Final Remarks

MOTIVATION

- The need for cyberinfrastructure (CI) is now ubiquitous and not all needs are the same
- It is not feasible to buy everything that the researchers need
- One solution is sharing
 - $\circ\,$ Sharing often leads to the tragedy of the commons
 - Hence *trading*

WHY CCC ?


Use-cases

- urgent jobs
- Save money by being flexible
- Burst capacity
- Exchange of computational resources

WHAT IS CCC

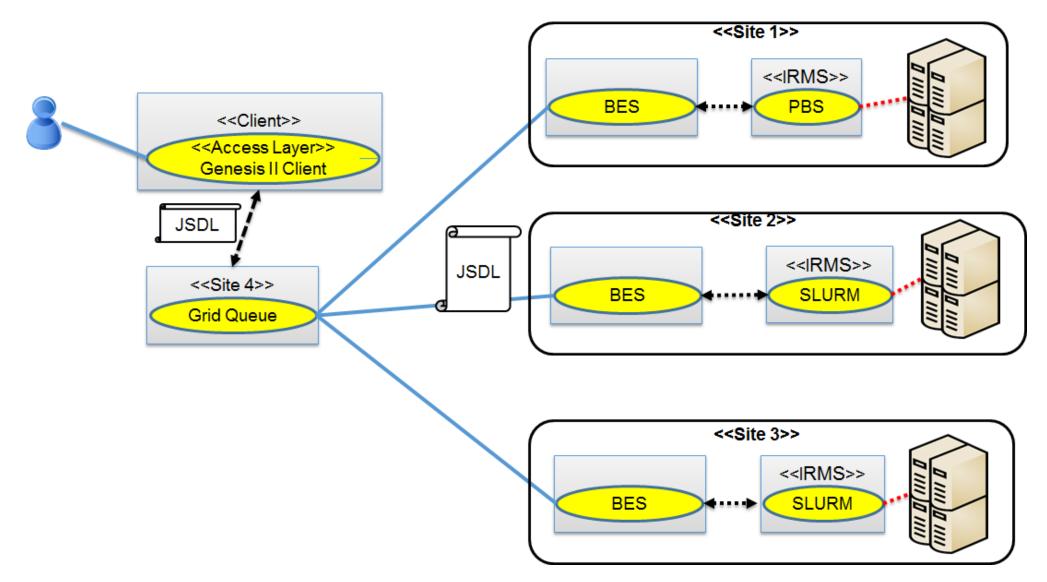
- CCC is a pilot project in the US which combines three basic ideas into a production compute environment
 - \circ Resource Market
 - o Differentiated QoS
 - \circ Resource Federation

WHAT DOES CCC PROVIDE

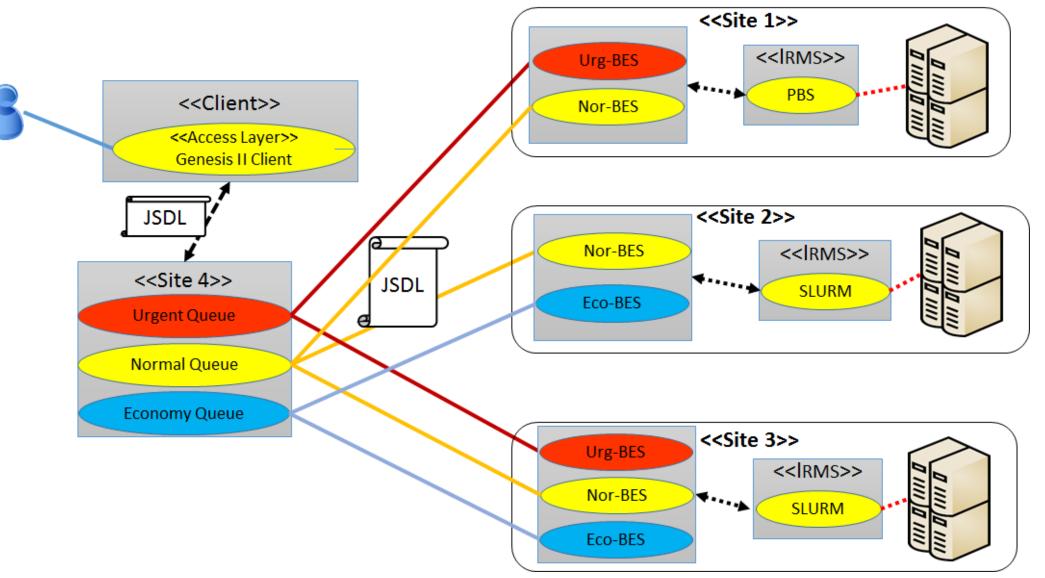
- Diversity of resources
- More resources are available to researchers when they need them
- Important jobs are scheduled immediately
- Projects with less funding still have access to resources
- Fair and transparent job priority
- Familiar and easy to use paradigm
- Cloud bursting capability
- Data sharing

CURRENT STATUS

- CCC is up and running
- IU and UVA are already on-board with some of their major computing resources
 - o Big-Red II (IU)
 - \circ Rivanna (UVA)
- Marshall University is also joining the cooperative soon.



CCC System Model


CCC System Model

- Build on Genesis II and XSEDE EMS (Execution Management Services)
- Differentiated QoS
 - o Run Immediately (high priority)
 - o Long Uninterrupted Run (Medium Priority)
 - o Best effort (Low Priority)
- Target Jobs
 - o Long Sequential Jobs
 - \circ High-Throughput Computing Jobs (HTC) / Parameter Sweep Jobs
 - \circ Parallel / MPI Jobs
 - \circ GPU Jobs
- Resource Accounting

XSEDE EMS

CCC ARCHITECTURE

USING THE CCC

USING THE CCC

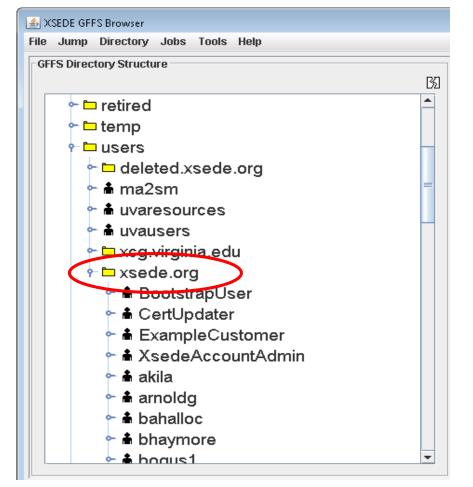
•Using CCC is very similar to what the researchers are used to with typical shared computational environment

• There is a namespace (GFFS) similar to unix directory structure

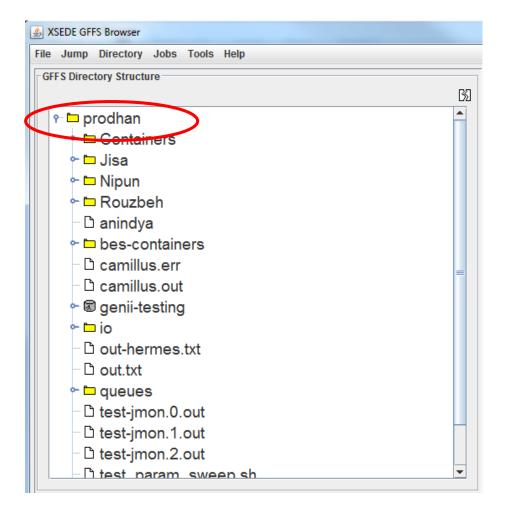
• The steps for using CCC are as follows

Login to access the system

o Use qsub to submit their job(s)

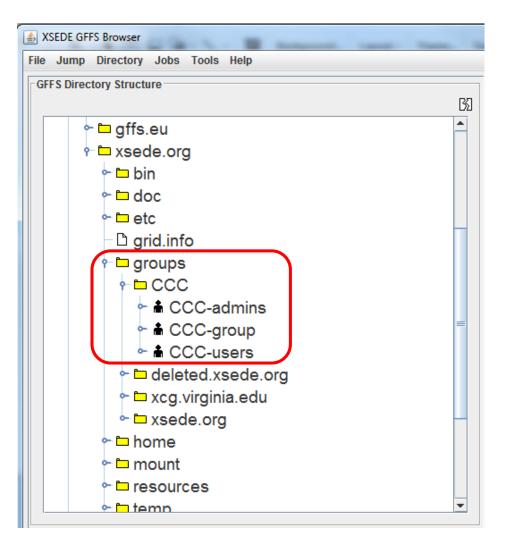

Use qstat to check the status of the job(s)

GFFS NAMESPACE


- Modeled on the Unix directory structure
- Maps file-names to resource EPRs
- Genesis II client supports access to GFFS namespace via-
 - \circ command line interface
 - $\circ \; {\rm GUI}$
 - $\circ \mbox{\rm APIs}$
 - Mounting the GFFS namespace using FUSE

🔳 grid	
[grid] ls / /:	
accounting bin doc	
etc groups home	
mount resources	
retired temp users	
xcg3-grid.txt z_old	
[grid]	-
<	►

USERS AND HOME DIRECTORY



User directory for the xsede user (/users/xsede.org)

My home directory on the grid (/home/xsede.org/prodhan)

- Users are grouped into different user-groups
- Each group has their own **permissions** and **capabilities**
- Admin groups are responsible for the **administration** of different resources

AUTHENTICATION-CREDENTIAL WALLET

💽 grid	- 0	X
[grid] whoami Client Tool Identity: 〈CONNECTION〉 ''Client Cert DD9A14B1-EA61-AD4C-FA90-B53A4ED5FE6F		* II
Additional Credentials: (USER) "mtp5cx" -> (CONNECTION) "Client Cert DD9A14B1-EA61-AD4 A4ED5FE6F"		
<pre></pre>		
3A4ED5FE6F'' (USER) "prodhan" -> (CONNECTION) "Client Cert DD9A14B1-EA61-AD 3A4ED5FE6F''		
(GROUP) "gffs-users" -> (CONNECTION) "Client Cert DD9A14B1-EA6 Ø-B53A4ED5FE6F" (GROUP) "CCC-admins" -> (CONNECTION) "Client Cert DD9A14B1-EA6		
0-B53A4ED5FE6F" (GROUP) "gffs-admins.iu" -> (CONNECTION) "Client Cert DD9A14B1 -FA90-B53A4ED5FE6F"	-EA61-	AD4C
[grid]		
		-

- User's credential are used to authenticate the user into the system.
- User's and User-groups create a credential wallet which can be used to run the jobs and pay for them.
- The system is build on standards

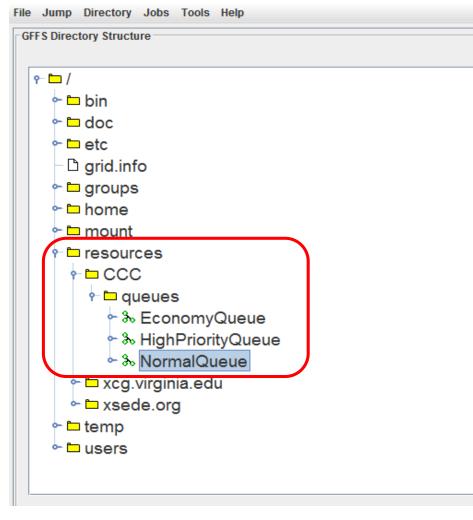
JSD[& JSD[++

• JSDL is the standard XML based language to describe jobs

• Defines-

Application Specification (e.g. LAMMPS)

• Resource requirements (e.g. GPU, 32 cores, 8 nodes etc.)

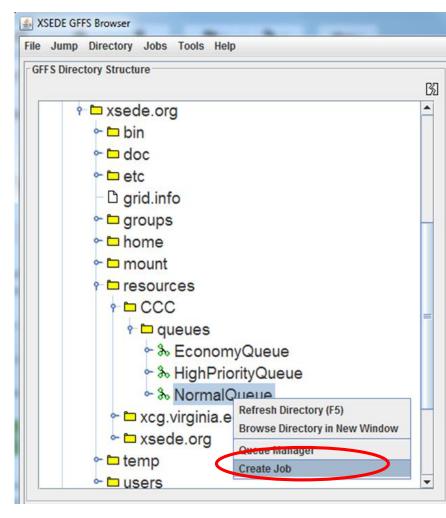

• Data staging specification (e.g. input and output files)

• JSDL++ is the non-standard extension of JSDL to allow multiple job descriptions in one jsdl file

• Addresses the shortcomings of JSDL in a heterogeneous environment

RESOURCES

SEDE GFFS Browser


ß

- Grid Queue(s) are mapped on the /*resources/CCC/queues* location.
- User(s) can submit their job(s) on one of the three priority queues based on their requirement.
- To submit a job to the queue, with a job description file we just need to run the following command and qstat command can be ised to monitor the job status

qsub /resources/CCC/queues/NormalQueue local://home/drake/job.jsdl

qstat /resources/CCC/queues/NormalQueue

JOB SUBMISSION & MONITORING THROUGH GUI

Job submission through GUI

Queue Manager		A Contra MER	The former		
Job Manager Resource Manager					
.lob Ticket	Job Name	Submit Time	Credentials	Attempts Job State	_
B507CF5A-BEA0-7895-DE95-7FD4FA0D6083	Lammps-aprun-test	Wed Sep 28 14:24:43 EDT 2016	rr3ay	1 FINISHED	
1275985B-8230-27D4-8859-9A6FDA998315	Lammps-aprun-test	Wed Sep 28 14:25:09 EDT 2016	rr3ay	1 FINISHED	
D512D3FF-0445-6D1C-C9D7-B550BF611EE0	Lammps-aprun-test	Wed Sep 28 14:25:32 EDT 2016	rr3ay	1 FINISHED	
2866B195-112A-DFD7-BD50-5DDD5E3E46B2	Lammps-aprun-test	Wed Sep 28 14:25:57 EDT 2016	rr3ay	1 FINISHED	
F396A93F-BAD7-C777-FE34-5A10E1D2455B	Lammps-aprun-test	Wed Sep 28 14:26:19 EDT 2016	rr3ay	1 FINISHED	
EA3A9291-CC06-6FC0-0FE5-04AA14F98B65	Lammps-aprun-test	Wed Sep 28 14:26:41 EDT 2016	rr3ay	1 FINISHED	
72AF3F75-BA2F-8646-49B2-190D058DE325	Lammps-aprun-test	Wed Sep 28 14:27:08 EDT 2016	rr3ay	1 FINISHED	
3578D42F-9519-95D4-0C1D-412AAF4D22BA	Lammps-aprun-test	Wed Sep 28 14:27:36 EDT 2016	rr3ay	1 FINISHED	
0B9C54EE-3B12-60CD-37FF-7A0FB7EFEB6D	Lammps-aprun-test	Wed Sep 28 14:27:58 EDT 2016	rr3ay	1 FINISHED	
91BEFA5D-AA30-011C-5869-139A8D59CA73	Lammps-aprun-test	Wed Sep 28 14:28:21 EDT 2016	rr3ay	1 FINISHED	
640DBCF6-C4B4-1DD7-C6D9-4CF349829D1F	Lammps-aprun-test	Wed Sep 28 14:28:46 EDT 2016	rr3ay	1 FINISHED	
E0965B2F-BA73-CD7E-C0D2-F3F2E9BB0BB2	Lammps-aprun-test	Wed Sep 28 14:29:09 EDT 2016	rr3ay	1 FINISHED	-

Monitoring a job through GUI

ob Manager Resource M	lanager									
		I								
Resource Name	Resource	OS		Arch	Accepti	Status	Last Updated	Next Update	Max Slots	Max cores
pbs-sudo-gpu-bigred2	PBS	Linux	X86		True	Available	Thu Sep 29 12:30:21 EDT 2		32	64
pbs-sudo-bigred2	PBS	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		0	20
Rivanna-economy	SLURM	Linux	X86		True	Available	Wed Sep 28 15:15:16 EDT		150	512
lxnm20	Simple	Linux	X86		True	Available	Wed Sep 21 16:40:05 EDT		16	16
pbs-sudo-mpi-bigred2	PBS	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		0	5
Rivanna-serial-cray	SLURM	Linux	X86		True	Available	Tue Sep 27 15:21:05 EDT 2		1	64
Rivanna-cray-threads	SLURM	Linux	X86		True	Available	Wed Sep 28 09:56:12 EDT		128	2560
Rivanna-cray-mpi	SLURM	Linux	X86		True	Available	Wed Sep 28 10:13:02 EDT		128	2560
slurm-main-camillus-centu	SLURM	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		8	70
slurm-main-camillus-gener	SLURM	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		0	75
slurm-main-camillus-herm	SLURM	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		8	120
slurm-main-mpi-camillus-h	SLURM	Linux	X86		True	Available	Wed Jun 15 14:50:56 EDT		8	50

Monitoring resource status through GUI

FIRST APPLICATIONS

- Large Sequential Jobs
 - \circ simulate the performance of a search engine
 - \circ used by a group in Computer Science Department
- Single/Multi-node Parallel Jobs (Lammps)
 - \circ molecular dynamics simulation
 - \circ used by a group in Mechanical and Aerospace Engineering Department \circ cpu and gpu acceleration
- High-Throughput Computing
 - \circ Astro-chemical Simulation
 - \circ used by a group in Chemistry Department
- Big **Gromacs** run upcoming

SOCIAL, POLITICAL

AND MARKET ASPECTS

SOCIAL & POLITICAL ISSUES

- Traditionally researchers are accustomed to using the shared resources with no QoS or not fairly defined priority
- There is often no mechanism of allocating resources fairly
- And often sharing becomes very one sided
- •Hence we need a resource market

RESOURCE PRICING AND MARKET MODEL

- Static pricing (Initially)
- Similar to Amazon's static pricing scheme
- Standard base pricing for a standard resource type
 - 2.1 GHz CPU with 4GB mem/core
 - \circ Ethernet or GigE network connections
- Additional features with additional cost (e.g. Large memory, InfiniBand, GPU)
- Different cost for different QoS jobs
 - Different scaling factors based on QoS
- An initial distribution of allocations to get the market flowing

GOVERNANCE AND CLEARANCE

- What about the chronic debtors?
- Any obligatory exchange of real money will make it a non-starter to the potential adapters.
- MoU to be signed by each institute
 - \circ Institute can opt-out any time
 - \circ No way to force anyone to pay
 - Institutions will vouch for their users

RELATED WORK

RELATED WORK

- Open Science Grid (OSG)
- Grid Economy
- Cloud Computing
- Cloud Federation

OPEN SCIENCE GRID

- •Developed primarily for high energy physics in the 90's
- •Resources are contributed in an altruistic manner

• Issues

No incentive for resource sharing
No QoS support in OSG
OSG is targeted for high throughput sequential job while CCC supports sequential, threaded or MPI jobs

GRID ECONOMY

- Plethora of work in **The Grid Economy**
- Spawn (Waldspurger et al.), Nimrod (Abramson et al.), The Grid Economy (Buyya et al.), GridEcon (Altmann et al.), InterGrid (Buyya et al.)

• Issues

- $\circ\,$ Much of the existing work has been done in simulations
 - Synthesized data
 - Small grid test-beds
- None of the existing production grids or clusters or supercomputing centers use these solutions
- Not focused on on-Demand solutions

CLOUD COMPUTING AND FEDERATION

- "Infinite" resource on-Demand
- Amazon AWS the leader in cloud computing
- •Cloud Federation: interconnecting the **cloud** computing environments of two or more service providers. i.e. Contrail (carlini et al.), Reservoir (rochwerger et al.)

• Issues:

- \circ Designed for VMs
- \circ More expensive options
- \circ A resource consumer can't be a resource provider

FINAL REMARKS

SHOULD YOU JOIN CCC

- If you need access to diverse resources and quick turnaround during bursts then CCC can definitely help you.
- Anyone with a small cluster can join the collaborative as a provider.

HOW TO JOIN CCC

• To access resources within CCC-

 \circ You will just need the genesis II client to access the computational and data resources available in CCC

 \circ You would probably need an allocation on CCC too.

o Identity (e.g. XSEDE id or CCC id through your institution)

• Signing an MOU

- To share your resources-
 - You will need a genesis II container installed on your server and allow CCC to submit jobs to the local queuing system
 - No root required !!!

CONCLUSION AND FUTURE WORK

- Future direction
 - Dynamic pricing model
 - Desktop VMs
 - Support starting VMs for users, not just for jobs
 - Expand to more Institutions
- •We believe federations like CCC can go a long way to deal with the growing need of CI resources
 - However the success of CCC really depends on the participation of users and user institutes

QUESTIONS

Thank You All

REFERENCE (1)

1	R. Buyya, D. Abramson and S. Venugopal, "The Grid Economy," Proceedings of the IEEE, vol. 93, no. 3, 2005.
2	J. Altmann, C. Courcoubetis, G. D. Stamoulis, M. Dramitinos, T. Rayna, M. Risch and C. Bannink, "GridEcon: A market place for computing resources," Grid Economics and Business Models, pp. 185-196, 2008.
3	R. Wolski, J. S. Plank, T. Bryan and J. Brevik, "G-commerce: Market formulations controlling resource allocation on the computational grid," in <i>15th International Parallel and Distributed Processing Symposium</i> , 2001
4	P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P. Frank and C. Chokkareddy, "OCEAN: the open computation exchange and arbitration network, a market approach to meta computing," in <i>International Symposium on Parallel and Distributed Computing</i> , 2003.
5	C. Waldspurger, T. Hogg, B. Huberman, J. O. Kephart and W. S. Storn, "Spawn: A distributed computational economy," <i>IEEE Transactions on Software Engineering,</i> vol. 18, no. 2, pp. 103–117, 1992.
6	F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, "Application-level scheduling on distributed heterogeneous networks," in <i>ACM/IEEE Conference on Supercomputing</i> , 1996.
7	O. Regev and N. Nisan, "The popcorn market. online markets for computational resources," <i>Decision Support Systems,</i> vol. 28, no. 1, pp. 177-189, 2000.
8	D. Abramson, R. Sosic, J. Giddy and B. Hall, "Nimrod: a tool for performing parametrised simulations using distributed workstations," in <i>Fourth IEEE International Symposium on High Performance Distributed Computing</i> , 1995.

REFERENCE (2)

9	"Amazon EC2," [Online]. Available: https://aws.amazon.com/ec2/. [Accessed 1 1 2016].
10	"Amazon AWS Instance Types," [Online]. Available: https://aws.amazon.com/ec2/instance-types/. [Accessed 1 1 2016].
11	"Open Science Grid," [Online]. Available: http://www.opensciencegrid.org/. [Accessed 1 1 2016].
12	R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee and R. Quick, "The open science grid," in <i>Journal of Physics: Conference Series</i> , 2007.
13	R. Buyya, R. Ranjan and R. N. Calheiros, "Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services," in <i>Algorithms and architectures for parallel processing</i> , 2001.
14	E. Carlini, M. Coppola, P. Dazzi, L. Ricci and G. Righetti, "Cloud federations in contrail," in <i>Euro-Par: Parallel Processing Workshops</i> , 2012.
15	B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth and J. Caceres, "The reservoir model and architecture for open federated cloud computing," <i>IBM Journal of Research and Development,</i> vol. 53, no. 4, 2010.

REFERENCES (3)

16	"RightScale: Cloud Portfolio Management," [Online]. Available: http://www.rightscale.com/. [Accessed 1 1 2016].
17	"Dell Hybrid Cloud," [Online]. Available: http://www.enstratius.com/home. [Accessed 1 1 2016].
18	"Scalr Enterprise Cloud Management Platform," Scalr, [Online]. Available: http://www.scalr.com/. [Accessed 1 1 2016].
19	"Kaavo- Cloud Management Software," [Online]. Available: http://www.kaavo.com/. [Accessed 1 1 2016].
20	F. Bachmann, I. Foster, A. Grimshaw, D. Lifka, M. Riedel and S. Tuecke, "XSEDE Architecture Level 3 Decomposition," 2013.
21	M. A. T. Prodhan and A. Grimshaw, "Market-based on demand scheduling (MBoDS) in co-operative grid environment," in <i>XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure</i> , St. Louis, Mo, 2015.