Crossing Analytics Systems: A Case for Integrated Provenance in Data Lakes

Isuru Suriarachchi and Beth Plale
School of Informatics and Computing, Indiana University

The Data Lake
- Generates data from various sources like sensor data, social media, cloud platforms and server logs
- Supports structured, semi-structured or unstructured data with no schema enforced at ingest time
- Data products are subjected to series of data transformations through distributed Big Data processing frameworks like Apache Hadoop and Apache Spark for analysis

Problem
- Increased flexibility leads to harder manageability
- Can provenance contribute to safer and more efficient Data Lakes through real time assessments and post execution traceability?

Provenance Use Cases in Data Lake
- Use Case 1: Suppose sensitive data are deposited into a Data Lake; social science survey data for instance. This dataset is processed by a chain of transformations. Can data provenance prevent improper leakage of sensitive parts into derived data?
- Use Case 2: Repeating a Big Data transformation in a Data Lake is expensive due to high resource and time consumption. Can live streaming provenance from experiments identify problems early in their execution?

Provenance Integration
- Comprehensive provenance should be integrated from ingest through all distributed transformations
- Transformation systems may or may not produce provenance. Even if they do (Ex: HadoopProv), standards and storage mechanisms can be different
- Stitching provenance traces from different systems can lose information and be extremely compute intensive for large graphs
- Real time provenance integration (use case 2) can not be achieved by post processing techniques

Methodology
- Central provenance collection sub system to which all distributed components within the Data Lake stream provenance events
- Provenance integration across distributed components is guaranteed by using unique identifiers for all data products within the Data Lake

REFERENCE ARCHITECTURE
- Provenance Stream Processing and Storage sub-system: heart of system; accepts provenance notifications through Ingest API and supports queries through Query API
- Messaging System: guarantees reliable message delivery into Provenance Storage
- Instrumented transformations: stream provenance events into Provenance Subsystem
- To capture information about origins of data products, provenance must be captured at Ingest
- Exported data products should be coupled with their provenance for better usability
- Both live and post-execution queries over collected provenance with Monitoring and Visualization helps in scenarios like the two use cases that we discussed above

PROTOTYPE IMPLEMENTATION
- Use Case: A Twitter data processing chain
 - Three different frameworks used for data processing
 - Komadu as the central provenance store
 - Flume, Hadoop and Spark jobs were instrumented using Komadu client libraries
 - Generated UUIDs are assigned for data products and persisted with them

Integrated Provenance Traces

FUTURE WORK
- Live provenance stream processing for real time monitoring and computational steering
- Efficient provenance graph storage/querying to handle "Big Provenance"
- Better usage of persistent identifiers through a Handle System or DOIs

CONTACT
- Isuru Suriarachchi, isurira@indiana.edu
- Beth Plale, plale@indiana.edu
- Data to Insight Center, http://d2i.indiana.edu/