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The Data Lake has arisen within 
last couple of years as 

conceptualization of data 
management framework with 
flexibility to support multiple 

data processing tools needed for 
truly Big Data analytics.   



Data Warehouse 

• Supports multidimensional analytical processing 

– Online Analytical Processing (OLAP) or 
Multidimensional OLAP 

• Numeric facts (measures) categorized by 
dimensions creating vector space (OLAP cube).  

• Interface is matrix interface like Pivot tables 

• Schema is star schema, snowflake schema 

• Storage is largely relational database 



Credit: https://www.linkedin.com/topic/data-warehouse-architecture 

Data Warehouse Architecture 

• ETL: Extraction, Transformation, Load 



Challenging the Warehouse: Big Data 

• From numerous sources 

– social media, sensor data, IoT devices, server logs, 
clickstream etc. 

• Not all numeric (quantitative) thus differently 
structured 

– Structured, semi-structured, unstructured 

• Continuously generated or archived  

 



Suitability of Data Warehouse for 
Today’s Big Data 

• ETL imposes burden 

– Schema on write 

– Inflexibility/inefficiency at ingest time 

– Information loss upon schema translation 

• Weak fit for popular Big Data analytical tools 
(e.g., Spark, Hadoop) and data serving 
platforms (e.g., HDFS, S3)  



Data Lake 

• A scalable storage infrastructure with no schema 
enforcement at ingest 

• Data ingested in raw form: no loss 
• Schema-on-read 
• Integrated Transformations 

– With e.g., Hadoop, Spark 
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Data Lake Challenges 

• Increased flexibility leads to harder 
manageability 

– Differently typed data can be easily dumped into 
the Data Lake 

– Data products can be in different stages of their 
lifecycle: raw, half processed, processed etc. 

– Can easily turn into “data swamps” 

• Requires traceability!!.. 

– Provenance can help 

 



Data Provenance 

• Information about activities, entities and people 
who involved in producing a data product 

• Standards 

– OPM 

– PROV 

• If a Data Lake ensures that every data product’s 
provenance is in place starting from data 
product’s origin, critical traceability can be had 

 



What provenance perspective could 
bring to a Data Lake? 

• Track origins of data, chained transformations 

• Contribute to reuse determinations of trust 
and quality 

•  React!!  Minimally constrain what enters a 
Lake? 



Challenges in Provenance Capturing 

• Chains of Transformations 

– Different analytics systems: Hadoop, Spark etc. 

• Need is end to end integrated provenance across 
transformations  

• System specific provenance 
collection methods are less 
useful 

– Integration/stitching 
problems 

– E.g.: RAMP, HadoopProv 
for Hadoop 



Solution to minimal lake governance 

• All components in lake stream provenance to 
central provenance subsystem 
– Stores provenance for long term queries 

– Monitors provenance stream in real time 

• Event in stream represented by edge in 
provenance graph 

• Global lake wide policy:  Uniform Persistent ID 
(PID) (Handle, UUIDs, DOIs) attached to all 
data objects in Data Lake 
–  required to guarantee integrated provenance 



Model 

• PID assigned to all data objects 
– granularity 

• Transformations T1, T2, and T3 
– Distributed 
– May use different frameworks 
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Provenance traces integrate across systems of 
Data Lake 



Reference Architecture 
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• Real-time provenance stream processing 

• Stored provenance for long term usage 



Prototype Use Case 

• Different frameworks used 

– Flume: Captures tweets and write into HDFS 

– Hadoop Job: Computes hashtag counts 

– Spark Job: Computes category counts 



Central provenance store 

• Uses Komadu 

– A distributed 
provenance 
collection tool 

– Visualization, 
Custom Queries 

I. Suriarachchi, Q. Zhou and B. Plale (2015). Komadu: A Capture and Visualization System for Scientific Data 
Provenance. Journal of Open Research Software 3(1):e4 



Client Library 

• Log4j like API for provenance capture 

• Dedicated thread pool in provenance layer 

• Batching to minimize network overhead 
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Use case evaluation 

• Flume, Hadoop and Spark jobs instrumented 
using Komadu client libraries 

• Jobs stream provenance events into central 
provenance store (Komadu) 

• Persistent IDs (UUID) assigned for each data 
object at entry to data lake; PID persists 
thereafter with data object 



Use case evaluation: experimental 
environment 

• 5 small VM instances, 2 2.5GhZ cores, 4 GB 
RAM, 50 GB local storage 

• 4 VM instances used for HDFS cluster 

• 3.23 GB Twitter data collected over 5 days 
running Flume on master node 

• Hadoop and Spark set up on top of HDFS 
cluster 

• Separate instance for RabbitMQ and Komadu 



Use case evaluation: Metrics 

• Batch size:  
– impact of batch size on provenance capture efficiency. 

Measured by total execution time for Hadoop using 
provenance event batching mechanism in Komadu 
library 

• Overhead of provenance capture:   
– Measured against total tool-specific execution time 
– measure overhead of customized value field (in key 

value pair) 
– Measure overhead of provenance capture for Hadoop 

and Spark 



Batch Size Test 

• Hadoop job execution times with varying 
batch sizes 

• Optimal batch size: ~5000 KB 



Overhead: Hadoop 

• custom val: emits PID with key value pair 
   as (#nba, <2, id>) instead of (#nba, 2) 

• data prov HDFS: writes provenance into HDFS, 
used by HadoopProv and RAMP 



Overhead: Spark 

• Higher provenance capture overhead 
compared to Hadoop 



Future Work 

• Performance overhead is prohibitively high 

– decouple PID assignment from execution?  
Examine granularity  

• Live provenance stream processing for real 
time monitoring/reaction 

• Explore minimal provenance at on-line rates 
and more comprehensive provenance at off-
line rates 
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