
Crossing Analytics Systems: Case for
Integrated Provenance in Data Lakes

Isuru Suriarachchi and Beth Plale

School of Informatics and Computing

Indiana University

IEEE E-science 2016 : Hot Topics

The Data Lake has arisen within
last couple of years as

conceptualization of data
management framework with
flexibility to support multiple

data processing tools needed for
truly Big Data analytics.

Data Warehouse

• Supports multidimensional analytical processing

– Online Analytical Processing (OLAP) or
Multidimensional OLAP

• Numeric facts (measures) categorized by
dimensions creating vector space (OLAP cube).

• Interface is matrix interface like Pivot tables

• Schema is star schema, snowflake schema

• Storage is largely relational database

Credit: https://www.linkedin.com/topic/data-warehouse-architecture

Data Warehouse Architecture

• ETL: Extraction, Transformation, Load

Challenging the Warehouse: Big Data

• From numerous sources

– social media, sensor data, IoT devices, server logs,
clickstream etc.

• Not all numeric (quantitative) thus differently
structured

– Structured, semi-structured, unstructured

• Continuously generated or archived

Suitability of Data Warehouse for
Today’s Big Data

• ETL imposes burden

– Schema on write

– Inflexibility/inefficiency at ingest time

– Information loss upon schema translation

• Weak fit for popular Big Data analytical tools
(e.g., Spark, Hadoop) and data serving
platforms (e.g., HDFS, S3)

Data Lake

• A scalable storage infrastructure with no schema
enforcement at ingest

• Data ingested in raw form: no loss
• Schema-on-read
• Integrated Transformations

– With e.g., Hadoop, Spark

In
ge

st
 A

P
I

Data

Data Lake

Clickstream
Sensor data
IoT Devices
Social Media
Could Platforms
Server Logs Metadata Lineage

Transform Transform Transform

Data Data Data

Analysis

Big Data Processing Frameworks
Ex: Hadoop, Spark, Storm

Data Lake Challenges

• Increased flexibility leads to harder
manageability

– Differently typed data can be easily dumped into
the Data Lake

– Data products can be in different stages of their
lifecycle: raw, half processed, processed etc.

– Can easily turn into “data swamps”

• Requires traceability!!..

– Provenance can help

Data Provenance

• Information about activities, entities and people
who involved in producing a data product

• Standards

– OPM

– PROV

• If a Data Lake ensures that every data product’s
provenance is in place starting from data
product’s origin, critical traceability can be had

What provenance perspective could
bring to a Data Lake?

• Track origins of data, chained transformations

• Contribute to reuse determinations of trust
and quality

• React!! Minimally constrain what enters a
Lake?

Challenges in Provenance Capturing

• Chains of Transformations

– Different analytics systems: Hadoop, Spark etc.

• Need is end to end integrated provenance across
transformations

• System specific provenance
collection methods are less
useful

– Integration/stitching
problems

– E.g.: RAMP, HadoopProv
for Hadoop

Solution to minimal lake governance

• All components in lake stream provenance to
central provenance subsystem
– Stores provenance for long term queries

– Monitors provenance stream in real time

• Event in stream represented by edge in
provenance graph

• Global lake wide policy: Uniform Persistent ID
(PID) (Handle, UUIDs, DOIs) attached to all
data objects in Data Lake
– required to guarantee integrated provenance

Model

• PID assigned to all data objects
– granularity

• Transformations T1, T2, and T3
– Distributed
– May use different frameworks

d1 T1

d2

d3

d4

d5

d6

d7

d8 T2 T3

d1 d3

d4

d6

d7

d8

Chain of
transformations

sharing Ids

Backward
provenance
from central

provenance store

Provenance traces integrate across systems of
Data Lake

Reference Architecture

In
ge

st
 A

P
I

Batch Processing
Ex: Hadoop, Spark

Lineage

Raw Data from
various sources

Transformations

Workflow Engines
Ex: Kepler

Legacy Scripts

Stream Processing
Ex: Storm, Spark

Monitoring

Debugging Reproducing Data Quality

Queries Visualization

Data Data Data
Data

Import

Lineage

Data
Export

Data Lake

Messaging System

Ingest API

Query API

P
ro

ve
n

a
n

ce
 S

u
b

sy
st

e
m

Prov Stream
Processing

Prov
Storage

Prov
Stream

• Real-time provenance stream processing

• Stored provenance for long term usage

Prototype Use Case

• Different frameworks used

– Flume: Captures tweets and write into HDFS

– Hadoop Job: Computes hashtag counts

– Spark Job: Computes category counts

Central provenance store

• Uses Komadu

– A distributed
provenance
collection tool

– Visualization,
Custom Queries

I. Suriarachchi, Q. Zhou and B. Plale (2015). Komadu: A Capture and Visualization System for Scientific Data
Provenance. Journal of Open Research Software 3(1):e4

Client Library

• Log4j like API for provenance capture

• Dedicated thread pool in provenance layer

• Batching to minimize network overhead

Application Layer API

Komadu Client Layer

RabbitMQ Client Layer

client.addGeneration(A, E)

batching prov thread
pool

RabbitMQ
Server

Komadu

Client Library

Use case evaluation

• Flume, Hadoop and Spark jobs instrumented
using Komadu client libraries

• Jobs stream provenance events into central
provenance store (Komadu)

• Persistent IDs (UUID) assigned for each data
object at entry to data lake; PID persists
thereafter with data object

Use case evaluation: experimental
environment

• 5 small VM instances, 2 2.5GhZ cores, 4 GB
RAM, 50 GB local storage

• 4 VM instances used for HDFS cluster

• 3.23 GB Twitter data collected over 5 days
running Flume on master node

• Hadoop and Spark set up on top of HDFS
cluster

• Separate instance for RabbitMQ and Komadu

Use case evaluation: Metrics

• Batch size:
– impact of batch size on provenance capture efficiency.

Measured by total execution time for Hadoop using
provenance event batching mechanism in Komadu
library

• Overhead of provenance capture:
– Measured against total tool-specific execution time
– measure overhead of customized value field (in key

value pair)
– Measure overhead of provenance capture for Hadoop

and Spark

Batch Size Test

• Hadoop job execution times with varying
batch sizes

• Optimal batch size: ~5000 KB

Overhead: Hadoop

• custom val: emits PID with key value pair
 as (#nba, <2, id>) instead of (#nba, 2)

• data prov HDFS: writes provenance into HDFS,
used by HadoopProv and RAMP

Overhead: Spark

• Higher provenance capture overhead
compared to Hadoop

Future Work

• Performance overhead is prohibitively high

– decouple PID assignment from execution?
Examine granularity

• Live provenance stream processing for real
time monitoring/reaction

• Explore minimal provenance at on-line rates
and more comprehensive provenance at off-
line rates

Work funded in part by National Science
Foundation OCI-0940824

IEEE E-science 2016 : Hot Topics

